高中数学an=1/(n+1)(n+3)求sn
展开全部
αn=1/(n+1)(n+3)=1/2(1/(n+1)-1/(n+3)),sn=α1+α2+α3+……+αn=1/2(1/2-1/4)+1/2(1/2-1/5)+1/2(1/4-1/6)+……+1/2(1/(n+1)-1/(n+3))=1/2(1/2-1/4+1/3-1/5+1/4-1/6+……+1/(n+1)-1/(n+3))=1/2(1/2+1/3-1(1/n+3))=1/2(5/6-1/(n+3))
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2021-08-20 · 知道合伙人教育行家
关注
展开全部
an=1/[(n+1)(n+3)]
=(1/2)*[1/(n+1)-1/(n+3)]
Sn=(1/2)*[(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+(1/6-1/8)+(1/7-1/9)+……]
=(1/2)*[1/2+1/3-1/(n+2)-1/(n+3)]=5/12-(2n+5)/[2(n+2)(n+3)]
=(1/2)*[1/(n+1)-1/(n+3)]
Sn=(1/2)*[(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+(1/6-1/8)+(1/7-1/9)+……]
=(1/2)*[1/2+1/3-1/(n+2)-1/(n+3)]=5/12-(2n+5)/[2(n+2)(n+3)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询