等腰三角形三线合一是哪三线?
2个回答
展开全部
等腰三角形三线合一是顶角的角平分线,底边的中线,底边的高线,三条线互相重合。三线合一只是针对等腰三角形的底边上的高,中线和顶角的平分线才具有的性质。其它两个腰上高,中线和两个底角的平分线就不一定具有“三线合一”的性质。
等腰三角形的性质
等腰三角形的两个底角度数相等。顶角平分线,底边上的中线,底边上的高相互重合。两底角的平分线相等。底边上的垂直平分线到两条腰的距离相等。一腰上的高与底边的夹角等于顶角的一半。底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
一般的等腰三角形是轴对称图形,只有一条对称轴,就是顶角平分线所在的直线。但等边三角形有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。等腰三角形的腰与它的高的关系有腰大于高,腰的平方等于高的平方加底的一半的平方。
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
绝缘子的爬距是指沿着绝缘子表面,两个导电部件之间的最短距离。爬距通常用爬电比距(P-Δ)来表示,其中P是电压,Δ是电势差(即两个导电部件之间的电势差),它可以用来描述绝缘子的绝缘性能。一般来说,爬距越小,绝缘子的绝缘性能就越好。同时,绝缘子...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
展开全部
三线合一
义项名:等腰三角形的特点之一
三线合一,即在等腰三角形(包括等边三角形)中(前提)顶角的角平分线,底边的中线,底边的高线,三条线互相重合,就叫三线合一(前提一定是在等腰三角形中,其它三角形不适用)。
84/600
3
信息栏(注:未填写内容的信息项将不会显示在词条页上)
中文名
等腰三角形三线合一定理
外文名
Isosceles triangle three lines one theorem
别名
在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合
表达式
提出者
提出时间
/
/
适用领域
数学几何
应用学科
数学
等级划分
初中几何
内容
等腰三角形三线合一
前提
三角形是等腰三角形或等边三角形
备注
等边三角形属于等腰三角形
逆命题是否成立
成立
简称
三线合一
增加信息项
正文(注:未填写内容的正文目录将不会显示在词条页上)
证明
已知:△ABC为等腰三角形,AB=AC,AD为中线。求证:AD⊥BC,∠BAD=∠CAD.
在△ABD和△ACD中:
BD=DC(等腰三角形的中线平分对应的边)
AB=AC(等腰三角形的性质)
AD=AD(公共边)
∴△ADB≌△ADC(SSS)
可得∠BAD=∠CAD,∠ADB=∠ADC (全等三角形对应角相等)
∵∠ADB+∠ADC=∠BDC(已证),且∠BDC=180°(平角定义)
∴∠ADB=∠ADC=90°(等量代换)
∴AD⊥BC
同理,若△ABC为等边三角形,结论同样成立。
得证
应用
1.∵AB=AC,BD=DC=1/2BC
∴AD⊥BD,AD平分∠BAC
2.∵AB=AC,AD⊥BC
∴BD=DC=1/2BC,AD平分∠BAC
3.∵AB=AC,AD平分∠BAC
∴AD⊥BD,BD=DC=1/2BC
逆命题
① 如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。
② 如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。
③ 如果三角形中有一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。
①AD⊥BC于D,②AD平分∠BAC,③AD是BC中线
(1)若以①②为条件,求证AB=AC。理由如下:
∵∠ADB=∠ADC=90°,∠BAD=∠CAD,AD=AD,
∴△ABD≌△ACD(ASA)
∴AB=AC
(2)若以②③为条件,求证AB=AC。理由如下:
∵AD是BC中线,
∴S△ABD=S△ACD,
作DE⊥AB于E,DF⊥AC于F,
又∵AD平分∠BAC,
∴DE=DF,
∴AB=AC(等底等高)
(3)若①③,求证AB=AC。理由如下:
∵BD=CD,∠ADB=∠ADC=90°,AD=AD,
∴△ABD≌△ACD,
∴AB=AC
义项名:等腰三角形的特点之一
三线合一,即在等腰三角形(包括等边三角形)中(前提)顶角的角平分线,底边的中线,底边的高线,三条线互相重合,就叫三线合一(前提一定是在等腰三角形中,其它三角形不适用)。
84/600
3
信息栏(注:未填写内容的信息项将不会显示在词条页上)
中文名
等腰三角形三线合一定理
外文名
Isosceles triangle three lines one theorem
别名
在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合
表达式
提出者
提出时间
/
/
适用领域
数学几何
应用学科
数学
等级划分
初中几何
内容
等腰三角形三线合一
前提
三角形是等腰三角形或等边三角形
备注
等边三角形属于等腰三角形
逆命题是否成立
成立
简称
三线合一
增加信息项
正文(注:未填写内容的正文目录将不会显示在词条页上)
证明
已知:△ABC为等腰三角形,AB=AC,AD为中线。求证:AD⊥BC,∠BAD=∠CAD.
在△ABD和△ACD中:
BD=DC(等腰三角形的中线平分对应的边)
AB=AC(等腰三角形的性质)
AD=AD(公共边)
∴△ADB≌△ADC(SSS)
可得∠BAD=∠CAD,∠ADB=∠ADC (全等三角形对应角相等)
∵∠ADB+∠ADC=∠BDC(已证),且∠BDC=180°(平角定义)
∴∠ADB=∠ADC=90°(等量代换)
∴AD⊥BC
同理,若△ABC为等边三角形,结论同样成立。
得证
应用
1.∵AB=AC,BD=DC=1/2BC
∴AD⊥BD,AD平分∠BAC
2.∵AB=AC,AD⊥BC
∴BD=DC=1/2BC,AD平分∠BAC
3.∵AB=AC,AD平分∠BAC
∴AD⊥BD,BD=DC=1/2BC
逆命题
① 如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。
② 如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。
③ 如果三角形中有一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。
①AD⊥BC于D,②AD平分∠BAC,③AD是BC中线
(1)若以①②为条件,求证AB=AC。理由如下:
∵∠ADB=∠ADC=90°,∠BAD=∠CAD,AD=AD,
∴△ABD≌△ACD(ASA)
∴AB=AC
(2)若以②③为条件,求证AB=AC。理由如下:
∵AD是BC中线,
∴S△ABD=S△ACD,
作DE⊥AB于E,DF⊥AC于F,
又∵AD平分∠BAC,
∴DE=DF,
∴AB=AC(等底等高)
(3)若①③,求证AB=AC。理由如下:
∵BD=CD,∠ADB=∠ADC=90°,AD=AD,
∴△ABD≌△ACD,
∴AB=AC
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询