设A,B为nn矩阵,证明:如果AB=0,那么秩(A)+秩(B)
1个回答
展开全部
设B=(b1,b2,...,bn)
所以AB=(Ab1,Ab2,...,Abn)=0
所以B的列向量b1,b2,...,bn都是 Ax=0 的解
所以b1,b2,...,bn可由Ax=0的基础解系线性表示
所以r(B)=r(b1,b2,...,bn)
所以AB=(Ab1,Ab2,...,Abn)=0
所以B的列向量b1,b2,...,bn都是 Ax=0 的解
所以b1,b2,...,bn可由Ax=0的基础解系线性表示
所以r(B)=r(b1,b2,...,bn)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询