一阶导数求法
展开全部
导数定义为,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限.在一个函数存在导数时,称这个函数可导或者可微分.
可导的函数一定连续.不连续的函数一定不可导.
y=f(x )的导数f′就是f的一阶导数
【
一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率),记作f′(x0),即
f′(x0)=Δy/Δx (Δx→0)
若极限为无穷大,称之为无穷大导数
若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数.
函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率.
】
可导的函数一定连续.不连续的函数一定不可导.
y=f(x )的导数f′就是f的一阶导数
【
一般地,假设一元函数 y=f(x )在 x0点的附近(x0-a ,x0 +a)内有定义,当自变量的增量Δx= x-x0→0时函数增量 Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率),记作f′(x0),即
f′(x0)=Δy/Δx (Δx→0)
若极限为无穷大,称之为无穷大导数
若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f′,称之为f的导函数,简称为导数.
函数y=f(x)在x0点的导数f′(x0)的几何意义:表示曲线l 在P0〔x0,f(x0)〕 点的切线斜率.
】
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询