点o在三角形Abc内部 且向量oa+2ob+3oc=0 则三角形Abc与三角形Aoc的比为?
展开全部
向量OA+2OB+3OC=0,则有
向量AO=2*向量OB+3*向量OC,.(1)
而,向量OB=向量(AB-AO).(2)
向量OC=向量(AC-AO).(3)
把(2),(3)式代入(1)式得,
向量AO=向量(2/6*AB+3/6*AC).
在AB边上作AE=2/6AB,在AC边上作AF=3/6*AC.
则有,向量AO=向量AE+向量AF=AE+EO.
而在三角形AEO中,
AO/sinAEO=EO/sinBAO=AO/sinBAC,
EO*sinBAC=AOsinBAO.(4)式
S-ABC=1/2*|AB|*|AC|*sinBAC,
S-BAO=1/2*|AB|*|AO|*sinBAO.
S-ABC/S-BAO=|AC|*sinBAC/|AO|*sinBAO.(5)
把(4)式代入(5)式得,
S-ABC/S-BAO=|AC|*sinBAC/|EO|*sinBAC
=AC/EO,
而,EO=AF=3/6AC=1/2*AC.
则,S-ABC/S-BAO=AC/EO=2/1.
则三角形Abc与三角形Aoc的比为2:1.
向量AO=2*向量OB+3*向量OC,.(1)
而,向量OB=向量(AB-AO).(2)
向量OC=向量(AC-AO).(3)
把(2),(3)式代入(1)式得,
向量AO=向量(2/6*AB+3/6*AC).
在AB边上作AE=2/6AB,在AC边上作AF=3/6*AC.
则有,向量AO=向量AE+向量AF=AE+EO.
而在三角形AEO中,
AO/sinAEO=EO/sinBAO=AO/sinBAC,
EO*sinBAC=AOsinBAO.(4)式
S-ABC=1/2*|AB|*|AC|*sinBAC,
S-BAO=1/2*|AB|*|AO|*sinBAO.
S-ABC/S-BAO=|AC|*sinBAC/|AO|*sinBAO.(5)
把(4)式代入(5)式得,
S-ABC/S-BAO=|AC|*sinBAC/|EO|*sinBAC
=AC/EO,
而,EO=AF=3/6AC=1/2*AC.
则,S-ABC/S-BAO=AC/EO=2/1.
则三角形Abc与三角形Aoc的比为2:1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询