已知α∈(0,[π/2]),sinα-cosα=[1/5].?

 我来答
远景教育17
2022-10-07 · TA获得超过5154个赞
知道小有建树答主
回答量:241
采纳率:0%
帮助的人:78.8万
展开全部
解题思路:(1)由sinα-cosα=[1/5],两边平方可得: si n 2 α+co s 2 α−2sinαcosα= 1 25 ,再利用平方关系即可得出.
(2)由α∈(0,[π/2]),可得sinα>0,cosα>0.于是sinα+cosα= (sinα+cosα ) 2 = 1+2sinαcosα 即可得出.
(1)∵sinα-cosα=[1/5],两边平方可得:sin2α+cos2α−2sinαcosα=
1
25,
∴1−2sinαcosα=
1
25,解得sinαcosα=
12
25.
(2)∵α∈(0,[π/2]),
∴sinα>0,cosα>0.
∴sinα+cosα=
(sinα+cosα)2=
1+2sinαcosα=
1+2×
12
25=[7/5].
,2,在吗,已知α∈(0,[π/2]),sinα-cosα=[1/5].
(1)求sinαcosα的值;
(2)求sinα+cosα的值.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式