微分是不是求导?
1个回答
展开全部
微分不是求导。
1、定义不同
微分:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
2、基本法则不同
微分:基本法则
求导:基本求导公式
3、应用不同
微分:法线,我们知道,曲线上一点的法线和那一点的切线互相垂直,微分可以求出切线的斜率,自然也可以求出法线的斜率。
增函数与减函数,微分是一个鉴别函数(在指定定义域内)为增函数或减函数的有效方法。
变化的速率,微分在日常生活中的应用,就是求出非线性变化中某一时间点特定指标的变化。
求导:求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
参考资料:百度百科-求导
参考资料:百度百科-微分
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询