勾股定理是数学定理吗

 我来答
hb7158
2022-08-13 · TA获得超过1.8万个赞
知道大有可为答主
回答量:2.3万
采纳率:75%
帮助的人:1901万
展开全部
没错,勾股定理是数学定理。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
我的猫咪打呼噜
2022-09-07 · TA获得超过653个赞
知道大有可为答主
回答量:1.1万
采纳率:96%
帮助的人:214万
展开全部
勾股定理是数学定理
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
定理用途
已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
勾股定理是欧氏几何的基础定理,并有巨大的实用价值。这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用。1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2022-08-21
知道答主
回答量:72
采纳率:33%
帮助的人:2万
展开全部
在直角三角形中,直角边的平方和等于斜边的平方
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
花城骰子
2022-07-07
知道答主
回答量:1
采纳率:100%
帮助的人:443
展开全部
勾股定理:

在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。

(如下图所示,即a² + b² = c²)



例子:

以上图的直角三角形为例,a的边长为3,b的边长为4,则我们可以利用勾股定理计算出c的边长。

由勾股定理得,a² + b² = c² → 3² +4² = c²

即,9 + 16 = 25 = c²

c = √25 = 5

所以我们可以利用勾股定理计算出c的边长为5。

扩展内容:

勾股定理:

勾股定理(Pythagorean theorem)又称商高定理、毕达哥拉斯定理、毕氏定理、百牛定理,是平面几何中一个基本而重要的定理。勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。勾股定理是人类早期发现并证明的重要数学定理之一。

勾股定理的逆定理:

勾股定理的逆定理是判断三角形为钝角、锐角或直角的一个简单的方法,其中AB=c为最长边:

如果a² + b² = c² ,则△ABC是直角三角形。

如果a² + b² > c² ,则△ABC是锐角三角形(若无先前条件AB=c为最长边,则该式的成立仅满足∠C是锐角)。

如果a² + b² < c² ,则△ABC是钝角三角形。

参考资料:勾股定理 - wiki
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式