有理数的定义和性质是什么

 我来答
机器1718
2022-06-28 · TA获得超过6775个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:155万
展开全部

整数与分数统称为有理数。有理数包括:正有理数、0、有理数。下面就和我具体了解一下,供大家参考。

有理数的定义是什么

有理数定义:有理数为整数(正整数、0、负整数)和分数的统称。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

有理数的性质有哪些

在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

有理数基本运算法则

(1)加法运算

1、同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两数相加得0。

4、一个数同0相加仍得这个数。

5、互为相反数的两个数,可以先相加。

6、符号相同的数可以先相加。

7、分母相同的数可以先相加。

8、几个数相加能得整数的可以先相加。

(2)减法运算

减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

(3)乘法运算

1、同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

4、几个数相乘,有一个因数为零,积就为零。

5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。

(4)除法运算

1、除以一个不等于零的数,等于乘这个数的倒数。

2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。

注意:零不能做除数和分母。有理数的除法与乘法是互逆运算。在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。

(5)乘方运算

1、负数的奇数次幂是负数,负数的偶数次幂是正数。例如:(-2)³(-2的3次方)=-8,(-2)²(-2的2次方)=4。

2、正数的任何次幂都是正数,零的任何正数次幂都是零。例如:2(2的2次方)=4,2(2的3次方)=8,0(0的3次方)=0。

3、零的零次幂无意义。

4、由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成。

5、1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式