怎么证三角形相似
证三角形相似的方法如下:
1、平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似。
2、如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似)。
3、如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似)。
4、如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。
三角形是由同一平面内不在同一直线上的三条线段“首尾”顺次连接所组成的封闭图形,在数学、建筑学有应用。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三旁中谈角形即等边三角形);按角分有直角三角形、运碰锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
相似三角形的特点:
1、相似三角形对应边成比例,对应角相等。
2、相似三角形对应边的比叫做相似比。
3、相似三角形的周长比等于相似比,面积比等于相似比的平方。
4、相似三角形对应线段(角平分线、中线、高)之比等于相似比。