1个回答
展开全部
第一个划线处是用了一次洛必达法则后的化简,分子的导数是-1/(π/2-arctanx)×1/(1+x^2),分母的导数是1/x,化简后就是划线部分。
第二个划线处用到了一个恒等式,arctanx+arccotx=π/2,即arctanx+arctan(1/x)=π/2。(这个化简不是必要的,继续使用洛必达法则也行)
第三个划线处,用了等价无穷小,arctan(1/x)等价于1/x。
-----
也可以这样做,用一次洛必达法则后稍加整理再用一次:lim lny=lim -1/(π/2-arctanx)×1/(1+x^2) / (1/x) =lim -x/(1+x^2)/(π/2-arctanx)=lim ((x^2-1)/(1+x^2)^2) / (-1/(1+x^2)) =lim (1-x^2)/(1+x^2)=-1。
第二个划线处用到了一个恒等式,arctanx+arccotx=π/2,即arctanx+arctan(1/x)=π/2。(这个化简不是必要的,继续使用洛必达法则也行)
第三个划线处,用了等价无穷小,arctan(1/x)等价于1/x。
-----
也可以这样做,用一次洛必达法则后稍加整理再用一次:lim lny=lim -1/(π/2-arctanx)×1/(1+x^2) / (1/x) =lim -x/(1+x^2)/(π/2-arctanx)=lim ((x^2-1)/(1+x^2)^2) / (-1/(1+x^2)) =lim (1-x^2)/(1+x^2)=-1。
追问
谢谢!但是还想问下,那个等价无穷小需要自己推吗,还是记结论?哪里有详细介绍?课本上有结论吗?
追答
是常用的等价无穷小,是“x→0时,tanx~x”的变形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询