已知函数f(x)=(㏒1/2x)∧2-2㏒1/2x+4,x∈[2,4],求f(x)值域
1个回答
展开全部
底数0<1/2<1,对数值随真数增大单调递减
x∈[2,4]
log(1/2)(4)≤log(1/2)(x)≤log(1/2)(2)
-2≤log(1/2)(x)≤-1
f(x)=[log(1/2)(x)²]-2[log(1/2)(x)]+4
=[log(1/2)(x) -1]² +3
-2≤log(1/2)(x)≤-1
-3≤log(1/2)(x) -1≤-2
4≤[log(1/2)(x) -1]²≤9
7≤[log(1/2)(x) -1]² +3≤12
7≤f(x)≤12
函数的值域为[7,12]
x∈[2,4]
log(1/2)(4)≤log(1/2)(x)≤log(1/2)(2)
-2≤log(1/2)(x)≤-1
f(x)=[log(1/2)(x)²]-2[log(1/2)(x)]+4
=[log(1/2)(x) -1]² +3
-2≤log(1/2)(x)≤-1
-3≤log(1/2)(x) -1≤-2
4≤[log(1/2)(x) -1]²≤9
7≤[log(1/2)(x) -1]² +3≤12
7≤f(x)≤12
函数的值域为[7,12]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询