(2012?商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面EF
(2012?商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面EFC⊥平面BCD;(Ⅱ)若平面ABD⊥平面BCD...
(2012?商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.(Ⅰ)求证:平面EFC⊥平面BCD;(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.
展开
1个回答
展开全部
(Ⅰ)∵△ABD中,E、F分别是AB,BD的中点,
∴EF∥AD.…(1分)
∵AD⊥BD,∴EF⊥BD.…(2分)
∵△BCD中,CB=CD,F是BD的中点,∴CF⊥BD.…(3分)
∵CF∩EF=F,∴BD⊥面EFC.…(5分)
∵BD?面BDC,∴平面EFC⊥平面BCD.…(6分)
(Ⅱ)∵面ABD⊥面BCD,面ABD∩面BCD=BD,AD⊥BD,
∴AD⊥面BCD,得AD是三棱锥A-BCD的高.…(8分)
∵BD=BC=1且CB=CD,∴△BCD是正三角形.…(10分)
因此,S△BCD=
×1×
=
,
∴三棱锥B-ADC的体积为VB?ACD=VA?BCD=
S△BCD?AD=
×
×1=
.…(12分)
∴EF∥AD.…(1分)
∵AD⊥BD,∴EF⊥BD.…(2分)
∵△BCD中,CB=CD,F是BD的中点,∴CF⊥BD.…(3分)
∵CF∩EF=F,∴BD⊥面EFC.…(5分)
∵BD?面BDC,∴平面EFC⊥平面BCD.…(6分)
(Ⅱ)∵面ABD⊥面BCD,面ABD∩面BCD=BD,AD⊥BD,
∴AD⊥面BCD,得AD是三棱锥A-BCD的高.…(8分)
∵BD=BC=1且CB=CD,∴△BCD是正三角形.…(10分)
因此,S△BCD=
1 |
2 |
| ||
2 |
| ||
4 |
∴三棱锥B-ADC的体积为VB?ACD=VA?BCD=
1 |
3 |
1 |
3 |
| ||
4 |
| ||
12 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询