设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx

设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.... 设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2. 展开
 我来答
手机用户43773
推荐于2016-12-01 · TA获得超过181个赞
知道答主
回答量:100
采纳率:0%
帮助的人:110万
展开全部

因为:
lim
x→0
(
sin3x
x3
+
f(x)
x2
)=
lim
x→0
sin3x+xf(x)
x3
lim
x→0
sin3x
x
+f(x)
x2
=0

所以:
lim
x→0
(
sin3x
x
+f(x))=0

又:f(x)在x=0的某领域内二阶可导,
所以:f(x),f′(x)在x=0连续,
从而:f(0)=-3.
lim
x→0
sin3x
x
+f(x)
x2
=0

得:
lim
x→0
sin3x
x
?3+f(x)+3
x2
=0

又易知:
lim
x→0
3?
sin3x
x
x2
lim
x→0
3x?sin3x
x3
lim
x→0
3?3cos3x
3x2
=
lim
x→0
3sin3x
2x
9
2

故:
lim
x→0
f(x)+3
x2
9
2

从而:f′(0)=
lim
x→0
f(x)?f(0)
x?0
lim
x→0
f(x)+3
x
lim
x→0
x?
f(x)+3
x
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消