杨辉三角的第n行第n个数的求法(公式)
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
……
特征
与二项式定理的关系:杨辉三角的第n行就是二项式 展开式的系数列.
对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”.
结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和.
这些数排列的形状像等腰三角形,两腰上的数都是1.
扩展资料:
杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
前提:每行端点与结尾的数为1.
每个数等于它上方两数之和。
每行数字左右对称,由1开始逐渐变大。
第n行的数字有n项。
第n行数字和为2n-1。
第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
(a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位... ...,以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
……
特征
与二项式定理的关系:杨辉三角的第n行就是二项式 展开式的系数列.
对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”.
结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和.
这些数排列的形状像等腰三角形,两腰上的数都是1.
从右往左斜着看,从左往右斜着看,和前面的看法一样,这个数列是左右对称的.
上面两个数之和就是下面的一行的数.
这行数是第几行,就是第二个数加一.
拓展:
杨辉三角形,又称贾宪三角形、帕斯卡三角形,是二项式系数在三角形中的一种几何排列。
杨辉三角形同时对应于二项式定理的系数。
n次的二项式系数对应杨辉三角形的n + 1行。
例如在中,2次的二项式正好对应杨辉三角形第3行系数1 2 1。
杨辉三角以正整数构成,数字左右对称,每行由1开始逐渐变大,然后变小,回到1。
第n行的数字个数为n个。
第n行的第k个数字为组合数。
第n行数字和为2n − 1。
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
……
其中第n行的第n个数为每行最后一个数,都为1。
扩展资料:
杨辉三角特征
1、每个数等于它上方两数之和。
2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n项。
4、第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
5、第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
1
1,2,1
1,3,3,1
1,4,6,4,1
1,5,10,10,5,1
1,6,15,20,15,6,1
公式是C(m,n)(C的上面是m,下面是n)
(1)第几行,n就是几,
(2)比如第6行,第一个数是Cº6=1(和第7个数相同)
第二个设是C¹6=1(和第6个数相同)
第三个设是C²6=15(和第5个数相同)
第四个数是C³6=20