函数f(x)=根号下(2x+4)在(
1个回答
展开全部
解数f(x)=根号下(2x+4)在[-2,+∞)上是单调递增函数,
证明设x1,x2属于[-2,+∞),且x1<x2
则f(x1)-f(x2)
=√(2x1+4)-√(2x2+4)
=[√(2x1+4)-√(2x2+4)]×1
=[√(2x1+4)-√(2x2+4)]×[√(2x1+4)+√(2x2+4)/√(2x1+4)+√(2x2+4)]
=[(√(2x1+4))²-(√(2x2+4))²]/[√(2x1+4)+√(2x2+4)]
=[(2x1+4)-(2x2+4)]/[√(2x1+4)+√(2x2+4)]
=[(2x1-2x2)]/[√(2x1+4)+√(2x2+4)]
由x1<x2知2x1<2x2,即2x1<2x2,即2x1-2x2<0
又有x1,x2属于[-2,+∞),即√(2x1+4)+√(2x2+4)>0
即
[(2x1-2x2)]/[√(2x1+4)+√(2x2+4)]<0
即f(x1)-f(x2)<0
即f(x)=根号下(2x+4)在[-2,+∞)上是单调递增函数。
证明设x1,x2属于[-2,+∞),且x1<x2
则f(x1)-f(x2)
=√(2x1+4)-√(2x2+4)
=[√(2x1+4)-√(2x2+4)]×1
=[√(2x1+4)-√(2x2+4)]×[√(2x1+4)+√(2x2+4)/√(2x1+4)+√(2x2+4)]
=[(√(2x1+4))²-(√(2x2+4))²]/[√(2x1+4)+√(2x2+4)]
=[(2x1+4)-(2x2+4)]/[√(2x1+4)+√(2x2+4)]
=[(2x1-2x2)]/[√(2x1+4)+√(2x2+4)]
由x1<x2知2x1<2x2,即2x1<2x2,即2x1-2x2<0
又有x1,x2属于[-2,+∞),即√(2x1+4)+√(2x2+4)>0
即
[(2x1-2x2)]/[√(2x1+4)+√(2x2+4)]<0
即f(x1)-f(x2)<0
即f(x)=根号下(2x+4)在[-2,+∞)上是单调递增函数。
TableDI
2024-07-18 广告
2024-07-18 广告
在Excel中,字符串匹配函数主要用于查找和定位特定字符串在文本中的位置或进行替换操作。常用的字符串匹配函数包括FIND、SEARCH、SUBSTITUTE和REPLACE等。FIND和SEARCH函数用于查找字符串的位置,而SUBSTIT...
点击进入详情页
本回答由TableDI提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询