反函数是什么?请举例说明

 我来答
咪浠W眯兮
高粉答主

推荐于2019-10-10 · 醉心答题,欢迎关注
知道小有建树答主
回答量:783
采纳率:100%
帮助的人:30.9万
展开全部

一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。

反函数y=f ^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。

例如,函数  的反函数是  。

扩展资料

反函数的复合函数

这个内容属于高等数学的内容了。大伙想想函数里面最简单最基本的函数是什么函数?不用说,肯定就是我们的恒等函数y=x,这就和我们数字里面的1一般地位,所以,我们记恒等函数为“1x”。

数字的基本运算就是加减乘除,而函数也有运算,虽然也有加减乘除,但是属于函数自己的,就是复合与反函数。我们知道在实数里,x与1/x的乘积等于1,在函数的复合运算里,也有类似的性质,函数f和g的复合记为f○g,那么下面的性质成立:f-1○f=1x;1x○f=f○1x=f。

这第一个式子已经说明很多问题。实际上,这些都是属于高等代数的内容,在每一个封闭的系统里,都有一个“单位1”,都有自己的运算法则,函数里的就是1x,实数里的就是数字1等等。

参考资料:百度百科-反函数

满意请采纳哟
推荐于2018-03-13 · 知道合伙人教育行家
满意请采纳哟
知道合伙人教育行家
采纳数:30594 获赞数:373504
2010年本科毕业于安徽工业大学高分子材料与工程专业,并取得工科学士学位证书。

向TA提问 私信TA
展开全部
反函数
开放分类:数学、函数
一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x).则y=f(x)的反函数为y=f-1(x).
存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的)
【反函数的性质】
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)偶函数一定不存在反函数,奇函数不一定存在反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.
(5)一切隐函数具有反函数;
(6)一段连续的函数的单调性在对应区间内具有一致性;
(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】.
(8)反函数是相互的
(9)定义域、值域相反对应法则互逆
(10)不是所有函数都有反函数如y=x的偶次方
例:y=2x-1的反函数是y=0.5x+0.5
y=2^x的反函数是y=log2 x
例题:求函数3x-2的反函数
y=3x-2的定义域为R,值域为R.
由y=3x-2解得
x=1/3(y+2)
将x,y互换,则所求y=3x-2的反函数是
y=1/3(x+2)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
易客z
2016-04-16 · TA获得超过1.8万个赞
知道大有可为答主
回答量:2090
采纳率:80%
帮助的人:357万
展开全部
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。反函数y=f ^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f (y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。在微积分里,f (n)(x)是用来指f的n次微分的。若一函数有反函数,此函数便称为可逆的(invertible)。简单的说,就是把y与x互换一下,比如y=x+2的反函数首先用y表示x即x=y-2,把x、y位置换一下就行那么y=x+2反函数就是y=x-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-08-29 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1617万
展开全部

反函数的概念如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
可儿lyq666
2016-04-16 · TA获得超过440个赞
知道小有建树答主
回答量:703
采纳率:43%
帮助的人:175万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式