什么是反函数法,具体举例
3个回答
展开全部
如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为y=f-1(x)。
互为反函数的两个函数的图象关于直线y=x对称;函数存在反函数的充要条件是,函数在它的定义域上是单调的;一个函数与它的反函数在相应区间上单调性一致。
大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
扩展资料:
y=f(x)的反函数应该是x=f-1(y)。只不过在通常的情况下,我们将x写作y,y写作x,以符合习惯。所以,虽然反函数和直接函数不互为倒数,但是各自导函数求出后,二者却是互为倒数。
反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f-1(x),那么函数y=f-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f -1(x)互为反函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询