设函数f(x)定义在(-l,l)上,证明fx+f-x是偶函数,fx-f-x是奇函数
2个回答
展开全部
设g(x)=f(x)+f(-x),h(x)=f(x)-f(-x)。
首先g(x)和h(x)的定义域都是(-l,l),相对原点对称。
则g(-x)=f(-x)+f(-(-x))=f-x)+f(x)=g(x)。
所以g(x)=f(x)+f(-x)是偶函数。
h(-x)=f(-x)-f(-(-x))=f(-x)-f(x)=-h(x)。
所以h(x)=f(x)-f(-x)是奇函数。
奇函数简介:
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。
1727年,年轻的瑞士数学家欧拉在提交给圣彼得堡科学院的旨在解决“反弹道问题”的一篇论文(原文为拉丁文)中,首次提出了奇、偶函数的概念。
2016-01-31
展开全部
设g(x)=f(x)+f(-x),h(x)=f(x)-f(-x)
首先g(x)和h(x)的定义域都是(-l,l),相对原点对称。
则g(-x)=f(-x)+f(-(-x))=f-x)+f(x)=g(x)
所以g(x)=f(x)+f(-x)是偶函数
h(-x)=f(-x)-f(-(-x))=f(-x)-f(x)=-h(x)
所以h(x)=f(x)-f(-x)是奇函数。
首先g(x)和h(x)的定义域都是(-l,l),相对原点对称。
则g(-x)=f(-x)+f(-(-x))=f-x)+f(x)=g(x)
所以g(x)=f(x)+f(-x)是偶函数
h(-x)=f(-x)-f(-(-x))=f(-x)-f(x)=-h(x)
所以h(x)=f(x)-f(-x)是奇函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询