3次和4次多项式如何分解因式?

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

3次和4次多项式都可以用待定系数法。

3次多项式的因式分解方法主要还是先观察出它的一个根来,然后判定它含有哪个一次因子,分解后就变为二次的了。分解因式的方法是多样的,且其方法之间相互联系,一道题很可能要同时运用多种方法才可能完成。例如:

4次多项式用待定系数法。如下图:

扩展资料:

F[x]中任一个次数不小于1的多项式都可以分解为F上的不可约多项式的乘积,而且除去因式的次序以及常数因子外,分解的方法是惟一的。

当F是复数域C时,根据代数基本定理,可证C[x]中不可约多项式都是一次的。因此,每个复系数多项式都可分解成一次因式的连乘积。

当F是实数域R时,由于实系数多项式的虚根是成对出现的,即虚根的共轭数仍是根,因此R[x]中不可约多项式是一次的或二次的。所以每个实系数多项式都可以分解成一些一次和二次的不可约多项式的乘积。实系数二次多项式αx2+bx+с不可约的充分必要条件是其判别式b2-4αс<0。

当F是有理数域Q时,情况复杂得多。要判断一个有理系数多项式是否不可约,就较困难。应用本原多项式理论,可把有理系数多项式的分解问题化为整系数多项式的分解问题。

一个整系数多项式如其系数是互素的,则称之为本原多项式。每个有理系数多项式都可表成一个有理数及一个本原多项式的乘积。关于本原多项式有下述重要性质。

参考资料:百度百科——因式分解

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式