参变量函数与参数方程的区别? 5

 我来答
本九小0r
2016-12-14 · TA获得超过2410个赞
知道大有可为答主
回答量:2258
采纳率:0%
帮助的人:176万
展开全部
定义  参数方程和函数很相似:它们都是由一些在指定的集的数,称为参数或自变量,以决定因变量的结果.例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等.
  在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)——⑴;且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数.类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t).⑵
  圆的参数方程 x=a+r cosθ y=b+r sinθ(θ属于[0,2π)) (a,b)为圆心坐标 r为圆半径 θ为参数 (x,y)为经过点的坐标
  椭圆的参数方程 x=a cosθ y=b sinθ(θ属于[0,2π)) a为长半轴 长 b为短半轴长 θ为参数
  双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
  抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
  直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
  或者x=x'+ut, y=y'+vt (t属于R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
  圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
  
摆线参数方程 x=r(θ-sinθ) y=r(1-cosθ)r为圆的半径,θ是圆的半径所经过的角度(滚动角),当θ由0变到2π时,动点就画出了摆线的一支,称为一拱.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式