常微分特征方程有重根怎么设特解 5
4个回答
展开全部
通解:
两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
两根相等的实根:y=(C1+C2x)e^(r1x)
一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
如果右边为多项式,则特解就设为次数一样的多项式;
如果右边为多项项乘以e^(ax)的形式,那就要看这个a是不是特征根:
如果a不是特征根,那就将特解设为同次多项式乘以e^(ax);
如果a是一阶特征根,那这个特解就要在上面的基础上乘以一个x;
n阶微分方程的解含有 n个任意常数
也就是说,微分方程的解中含有任意常数的个数和方程的阶数相同,这种解叫做微分方程的通解。通解构成一个函数族。
如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。
2018-12-06 · 知道合伙人教育行家
wxsunhao
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:20073
获赞数:77233
国家级安全专家 省安全专家、职业健康专家 常州市安委会专家 质量、环境、职业健康安全审核员 教授级高级工
向TA提问 私信TA
关注
展开全部
二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
通解
1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2.两根相等的实根:y=(C1+C2x)e^(r1x)
3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
通解
1.两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)
2.两根相等的实根:y=(C1+C2x)e^(r1x)
3.一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询