急求英文翻译!!! 15
linestructureinthespectrumoftherecursiveCORDIC,andthephaseerrorcorrectionisnotapplied...
line structure in the spectrum of the
recursive CORDIC, and the phase error
correction is not applied to suppress phase
error artifacts but rather to complete the
phase rotation left incomplete due to the
residual phase term in the angle accumulator.
This is a very different DDS!
IMPLEMENTATION
As a practical note, there are truncating
quantizers between the AGC multipliers
and the feedback delay element registers.
As such, the truncation error circulates
in the registers and contributes an
undesired dc component to the complex
sinusoid output. This dc component can
(and should) be suppressed by using a
sigma delta-based dc cancellation loop
between the AGC multipliers and the
feedback delay elements [6].
CONCLUSIONS
We modified the traditional recursive
DDS complex oscillator structure to a
tangent/cosine configuration. The tan(θ)
computations were implemented by
CORDIC rotations avoiding the need for
multiply operations. To minimize output
phase angle error, we applied a post-
CORDIC clean-up angle rotation. Finally,
we stabilized the DDS output amplitude
by an AGC loop. The phase-noise performance
of the DDS is quite remarkable
and we invite you, the reader, to take a
careful look at its structure.
不要用电脑翻译!!! 展开
recursive CORDIC, and the phase error
correction is not applied to suppress phase
error artifacts but rather to complete the
phase rotation left incomplete due to the
residual phase term in the angle accumulator.
This is a very different DDS!
IMPLEMENTATION
As a practical note, there are truncating
quantizers between the AGC multipliers
and the feedback delay element registers.
As such, the truncation error circulates
in the registers and contributes an
undesired dc component to the complex
sinusoid output. This dc component can
(and should) be suppressed by using a
sigma delta-based dc cancellation loop
between the AGC multipliers and the
feedback delay elements [6].
CONCLUSIONS
We modified the traditional recursive
DDS complex oscillator structure to a
tangent/cosine configuration. The tan(θ)
computations were implemented by
CORDIC rotations avoiding the need for
multiply operations. To minimize output
phase angle error, we applied a post-
CORDIC clean-up angle rotation. Finally,
we stabilized the DDS output amplitude
by an AGC loop. The phase-noise performance
of the DDS is quite remarkable
and we invite you, the reader, to take a
careful look at its structure.
不要用电脑翻译!!! 展开
1个回答
展开全部
线结构的频谱
递归CORDIC算法和相位误差
更正不适用于抑制阶段
错误文物而是完成
相位旋转半途而废,由于
在蓄电池剩余阶段的角度来说。
这是一个非常不同的DDS的!
实现
作为一个实际说明,有截断
量化间的AGC乘数
和反馈延迟元件寄存器。
因此,截断误差流通
在登记和贡献1
不受欢迎的直流分量的复杂
正弦波输出。此DC组件可以
(也应该)通过抑制使用
∑-Δ型直流取消循环
间的AGC乘数和
反馈延迟元件[6]。
结论
我们修改了传统的递归
DDS的复杂结构,以一个振荡器
切线/余弦配置。黝黑的大(θ)
计算被执行
CORDIC算法的旋转避免需要
乘法运算。为了尽量减少输出
相位角误差,我们使用后
CORDIC算法的清理角度旋转。最后,
我们稳定了DDS输出幅度
由AGC环路。相位噪声性能
该DDS是相当显着
我们请你,读者,采取一
仔细看看它的结构。
递归CORDIC算法和相位误差
更正不适用于抑制阶段
错误文物而是完成
相位旋转半途而废,由于
在蓄电池剩余阶段的角度来说。
这是一个非常不同的DDS的!
实现
作为一个实际说明,有截断
量化间的AGC乘数
和反馈延迟元件寄存器。
因此,截断误差流通
在登记和贡献1
不受欢迎的直流分量的复杂
正弦波输出。此DC组件可以
(也应该)通过抑制使用
∑-Δ型直流取消循环
间的AGC乘数和
反馈延迟元件[6]。
结论
我们修改了传统的递归
DDS的复杂结构,以一个振荡器
切线/余弦配置。黝黑的大(θ)
计算被执行
CORDIC算法的旋转避免需要
乘法运算。为了尽量减少输出
相位角误差,我们使用后
CORDIC算法的清理角度旋转。最后,
我们稳定了DDS输出幅度
由AGC环路。相位噪声性能
该DDS是相当显着
我们请你,读者,采取一
仔细看看它的结构。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询