一道积分计算题!
一道积分计算题!如图所示,答案已给出,请问最后一步划红线处的式子是怎么得出结果的呢?烦请计算解释,谢谢了!...
一道积分计算题!如图所示,答案已给出,请问最后一步划红线处的式子是怎么得出结果的呢?烦请计算解释,谢谢了!
展开
2个回答
展开全部
其详细过程可以是,∫(-∞,y)xe^(-x²-y²)dx=[e^(-y²)]∫(-∞,y)xe^(-x²)dx=(-1/2)e^(-2y²)。同理,∫(-∞,y)ye^(-x²-y²)dy=(-1/2)e^(-2x²)。
∴原式=(-1/2)∫(-∞,∞)e^(-2y²)dy-(1/2)∫(-∞,∞)e^(-2x²)dx=-∫(-∞,∞)e^(-2x²)dx①。
设I=∫(-∞,∞)e^(-2y²)dy=∫(-∞,∞)e^(-2x²)dx。∴I²=∫(-∞,∞)e^(-2y²)dy∫(-∞,∞)e^(-2x²)dx。
再设x=ρcosθ,y=ρsinθ。∴I²=∫(0,2π)dθ∫(0,∞)ρe^(-2ρ²)dρ=π/2。
∴原式=-√(π/2)。
【另外,亦可借用正态分布的密度函数性质“巧”得前述①之结果。视①处的X~N(μ,δ),则其密度函数f(x)=(1/A)e^[-(x-μ)/(2δ)],其中A=δ√(2π)。由其性质,有∫(-∞,∞)f(x)dyx=1,∴∫(-∞,∞)e^[-(x-μ)/(2δ)]dx=A。令μ=0,2σ=1/2。∴∫(-∞,∞)e^(-2x)dx=√(π/2)】供参考。
∴原式=(-1/2)∫(-∞,∞)e^(-2y²)dy-(1/2)∫(-∞,∞)e^(-2x²)dx=-∫(-∞,∞)e^(-2x²)dx①。
设I=∫(-∞,∞)e^(-2y²)dy=∫(-∞,∞)e^(-2x²)dx。∴I²=∫(-∞,∞)e^(-2y²)dy∫(-∞,∞)e^(-2x²)dx。
再设x=ρcosθ,y=ρsinθ。∴I²=∫(0,2π)dθ∫(0,∞)ρe^(-2ρ²)dρ=π/2。
∴原式=-√(π/2)。
【另外,亦可借用正态分布的密度函数性质“巧”得前述①之结果。视①处的X~N(μ,δ),则其密度函数f(x)=(1/A)e^[-(x-μ)/(2δ)],其中A=δ√(2π)。由其性质,有∫(-∞,∞)f(x)dyx=1,∴∫(-∞,∞)e^[-(x-μ)/(2δ)]dx=A。令μ=0,2σ=1/2。∴∫(-∞,∞)e^(-2x)dx=√(π/2)】供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |