函数f(x)=-x2+8x-14在区间[2,5]上的零点个数是( ) A.0个 ...

函数f(x)=-x2+8x-14在区间[2,5]上的零点个数是()A.0个B.1个C.2个D.无数个... 函数f(x)=-x2+8x-14在区间[2,5]上的零点个数是( ) A.0个 B.1个 C.2个 D.无数个 展开
 我来答
逮堂单于一瑾
2019-07-16 · TA获得超过3752个赞
知道大有可为答主
回答量:3083
采纳率:31%
帮助的人:181万
展开全部
分析:先找其对称轴对应的值,在看两端点值的正负,利用零点存在性定理有f(a)•f(b)<0来下结论.
解答:解;因为f(x)=-x2+8x-14开口向下,对称轴为x=4,且f(4)=2
f(2)=-2,f(5)=1,故f(x)=-x2+8x-14在[2,4]上有一个零点,在[4,5]上没有零点.
所以f(x)=-x2+8x-14在区间[2,5]上的零点个数是1个
故选B.
点评:本题主要考查知识点是根的存在性及根的个数判断、函数的应用,属于基础题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式