如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C
如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线L1,L2交于点C(1)求点D坐标(2)求直线l2的表达式(3)求点C坐标和△AD...
如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线L1,L2交于点C
(1)求点D坐标
(2)求直线l2的表达式
(3)求点C坐标和△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得三角形AOP与三角形ADC面积相等,若存在,求出点P坐标 展开
(1)求点D坐标
(2)求直线l2的表达式
(3)求点C坐标和△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得三角形AOP与三角形ADC面积相等,若存在,求出点P坐标 展开
3个回答
展开全部
(1)直线l1:y=-3x+3与x轴交于点D,
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-32),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b-32=3k+b 解得k=32b=-6
所以直线l2的解析式是y=32x-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即
y=-3x+3y=32x-6 解得,x=2y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是12×3×3=92
(4)因为△ADC和△ADP面积相等且有公共边AD,
所以点P到x轴的距离等于点C到x轴的距离等于3,
即点P的纵坐标等于3,此时3=32x-6
解得x=6,即P(6,3)。
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-32),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b-32=3k+b 解得k=32b=-6
所以直线l2的解析式是y=32x-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即
y=-3x+3y=32x-6 解得,x=2y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是12×3×3=92
(4)因为△ADC和△ADP面积相等且有公共边AD,
所以点P到x轴的距离等于点C到x轴的距离等于3,
即点P的纵坐标等于3,此时3=32x-6
解得x=6,即P(6,3)。
展开全部
直线l1:y=-3x+3与x轴交于点D,
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-3/2),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b -3/2=3k+b
解得k=3/2,b=-6
所以直线l2的解析式是y=3x/2-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即y=-3x+3. y=3x/2-6
解得,x=2,y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是1/2×3×3=9/2
当y=0时,-3x+3=0,解得,x=1
所以点D的坐标是(1,0)
(2)由图可知直线l2过点A(4,0)、B(3,-3/2),
设其解析式为y=kx+b,把A、B的坐标代入得:
0=4k+b -3/2=3k+b
解得k=3/2,b=-6
所以直线l2的解析式是y=3x/2-6。
(3)由点A(4,0)和点D(1,0),得AD=3
点C是直线l1和l2的交点,即y=-3x+3. y=3x/2-6
解得,x=2,y=-3
所以点C(2,-3)到x轴的距离是|-3|=3
所以△ADC的面积是1/2×3×3=9/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)由y=-3x+3,令y=0,得-3x+3=0,
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;
x=3,y=-
3
2
,
∴
4k+b=03k+b=-32
,
∴
k=32b=-6
,
∴直线l2的解析表达式为y=
3
2
x-6;
(3)由
y=-3x+3y=32x-6
,
解得
x=2y=-3
,
∴C(2,-3),
∵AD=3,
∴S△ADC=
1
2
×3×|-3|=
9
2
;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是C到AD的距离,即C纵坐标的绝对值=|-3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x-6,y=3,
∴1.5x-6=3
x=6,
所以P(6,3).
∴x=1,
∴D(1,0);
(2)设直线l2的解析表达式为y=kx+b,
由图象知:x=4,y=0;
x=3,y=-
3
2
,
∴
4k+b=03k+b=-32
,
∴
k=32b=-6
,
∴直线l2的解析表达式为y=
3
2
x-6;
(3)由
y=-3x+3y=32x-6
,
解得
x=2y=-3
,
∴C(2,-3),
∵AD=3,
∴S△ADC=
1
2
×3×|-3|=
9
2
;
(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是C到AD的距离,即C纵坐标的绝对值=|-3|=3,
则P到AD距离=3,
∴P纵坐标的绝对值=3,点P不是点C,
∴点P纵坐标是3,
∵y=1.5x-6,y=3,
∴1.5x-6=3
x=6,
所以P(6,3).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询