已知函数f(x)=xlnx,g(x)=-x^2+ax-3 5

(1)求函数f(x)在[t,t+2](t>0)上的最小值(2)对一切x∈(0,+∞),2f(x)>=g(x)恒成立,求实数a的取值范围(3)证明:对一切x∈(0,+∞),... (1)求函数f(x)在[t,t+2](t>0)上的最小值
(2)对一切x∈(0,+∞),2f(x)>=g(x)恒成立,求实数a的取值范围
(3)证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立
展开
 我来答
亥豕喜气洋洋1770
2012-04-23 · TA获得超过6.2万个赞
知道大有可为答主
回答量:3.5万
采纳率:0%
帮助的人:2380万
展开全部
1)令f'(x)=lnx+1=0,得x=1/e,
当0<t<1/e时f(x)在[t,1/e]上是减函数,
在[1/e,t+2]上是增函数,
所以f(x)在[t,t+2]上的最小值是f(1/e)=-1/e;
当t>=e^(-1)时,f(x)在[t,t+2](t>0)是增函数,
f(x)在[t,t+2]的最小值是f(t)=tlnt.
(2)由不等式2f(x)≥g(x)
得2xlnx≥-x^2+ax-3 ,
即2lnx+x+3/x≥a,
令G(x)=2lnx+x+3/x,
对G(x)求导得
G'(x)=2/x+1-3/x^2=(x^2+2x-3)/x^2=(x+3)(x-1)/x^2
令G'(x)=0
得x=-3或x=1,
所以G(x)在(0,1)是减函数,在[1,∞)上是增函数,x=1是最小值点。
故有 G(x)的最小值是G(1)=4,
所以a≤4.
(3)由lnx>1/(e^x)-2/(ex)可得
lnx-[1/(e^x)-2/ex)]>0
令H(x)=lnx-[1/(e^x)-2/(ex)]
求导得 H'(x)=(1/x)+1/e^x+2/(ex^2)
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式