已知函数f(x)=xlnx,g(x)=-x^2+ax-3 5
(1)求函数f(x)在[t,t+2](t>0)上的最小值(2)对一切x∈(0,+∞),2f(x)>=g(x)恒成立,求实数a的取值范围(3)证明:对一切x∈(0,+∞),...
(1)求函数f(x)在[t,t+2](t>0)上的最小值
(2)对一切x∈(0,+∞),2f(x)>=g(x)恒成立,求实数a的取值范围
(3)证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立 展开
(2)对一切x∈(0,+∞),2f(x)>=g(x)恒成立,求实数a的取值范围
(3)证明:对一切x∈(0,+∞),都有lnx>1/e^x-2/ex成立 展开
1个回答
展开全部
1)令f'(x)=lnx+1=0,得x=1/e,
当0<t<1/e时f(x)在[t,1/e]上是减函数,
在[1/e,t+2]上是增函数,
所以f(x)在[t,t+2]上的最小值是f(1/e)=-1/e;
当t>=e^(-1)时,f(x)在[t,t+2](t>0)是增函数,
f(x)在[t,t+2]的最小值是f(t)=tlnt.
(2)由不等式2f(x)≥g(x)
得2xlnx≥-x^2+ax-3 ,
即2lnx+x+3/x≥a,
令G(x)=2lnx+x+3/x,
对G(x)求导得
G'(x)=2/x+1-3/x^2=(x^2+2x-3)/x^2=(x+3)(x-1)/x^2
令G'(x)=0
得x=-3或x=1,
所以G(x)在(0,1)是减函数,在[1,∞)上是增函数,x=1是最小值点。
故有 G(x)的最小值是G(1)=4,
所以a≤4.
(3)由lnx>1/(e^x)-2/(ex)可得
lnx-[1/(e^x)-2/ex)]>0
令H(x)=lnx-[1/(e^x)-2/(ex)]
求导得 H'(x)=(1/x)+1/e^x+2/(ex^2)
当0<t<1/e时f(x)在[t,1/e]上是减函数,
在[1/e,t+2]上是增函数,
所以f(x)在[t,t+2]上的最小值是f(1/e)=-1/e;
当t>=e^(-1)时,f(x)在[t,t+2](t>0)是增函数,
f(x)在[t,t+2]的最小值是f(t)=tlnt.
(2)由不等式2f(x)≥g(x)
得2xlnx≥-x^2+ax-3 ,
即2lnx+x+3/x≥a,
令G(x)=2lnx+x+3/x,
对G(x)求导得
G'(x)=2/x+1-3/x^2=(x^2+2x-3)/x^2=(x+3)(x-1)/x^2
令G'(x)=0
得x=-3或x=1,
所以G(x)在(0,1)是减函数,在[1,∞)上是增函数,x=1是最小值点。
故有 G(x)的最小值是G(1)=4,
所以a≤4.
(3)由lnx>1/(e^x)-2/(ex)可得
lnx-[1/(e^x)-2/ex)]>0
令H(x)=lnx-[1/(e^x)-2/(ex)]
求导得 H'(x)=(1/x)+1/e^x+2/(ex^2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询