方程组有唯一解的条件是什么?
1个回答
展开全部
对于齐次线性方程组,若方程组有唯一零解,则系数矩阵满秩,或者说系数矩阵的行列式不等于零。若方程组有除过零解外的唯一非零解,则系数矩阵不满秩,即行列式等于零。
对于非齐次线性方程组。若方程组有唯一非零解。则首先系数矩阵的秩必须等于增广矩阵的秩,因为这才有解。其次,二者的秩不仅要相等,还要满秩,即等于未知数的个数n,这样才有唯一非零解。
线性方程组解题法则:
1、克莱姆法则:用克莱姆法则求解方程组 有两个前提,一是方程的个数要等于未知量的个数,二是系数矩阵的行列式要不等于零。用克莱姆法则求解方程组实际上相当于用逆矩阵的方法求解线性方程组,它建立线性方程组的解与其系数和常数间的关系。
2、矩阵消元法:将线性方程组的增广矩阵通过行的初等变换化为行简化阶梯形矩阵 ,则以行简化阶梯形矩阵为增广矩阵的线性方程组与原方程组同解。当方程组有解时,将其中单位列向量对应的未知量取为非自由未知量,其余的未知量取为自由未知量,即可找出线性方程组的解。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询