a>0,b>0,a≠b,m.n是正整数,n>m,求证a^n+b^n>a^mb^(n-m)+a^(n-m)b^m

 我来答
华源网络
2022-05-17 · TA获得超过5557个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:143万
展开全部
a^n+b^n-a^mb^(n-m)-a^(n-m)b^m
=a^m(a^(n-m)-b^(n-m))-(a^(n-m)-b^(n-m))b^m
=(a^m-b^m)(a^(n-m)-b^(n-m))
1)a>b
a^m>b^m
a^(n-m)>b^(n-m)
原式>0
2)aa^mb^(n-m)+a^(n-m)b^m
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式