复合函数求偏导
复合函数偏导求法:运用链式求导法。运用链式求导时,对一个变量求导,其余变量当成常数对待。
复合函数求导规则
复合函数求导的前提:复合函数本身及所含函数都可导。
法则1:设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);
法则2:设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x)。
链式法则
链式法则是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。
偏导数求法
当函数z=f(x,y)在(x0,y0)的两个偏导数f'x(x0,y0)与f'y(x0,y0)都存在时,我们称f(x,y)在(x0,y0)处可导。如果函数f(x,y)在域D的每一点均可导,那么称函数f(x,y)在域D可导。
此时,对应于域D的每一点(x,y),必有一个对x(对y)的偏导数,因而在域D确定了一个新的二元函数,称为f(x,y)对x(对y)的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。