多项式为基地的多项式是什么
10个回答
展开全部
多项式基底 多项式基底是将多项式方程式分解为线性函数。傅立叶基底 正弦和余弦形成平方可积函数的(正交)Schauder 基。 作为一个特例,该集合为:形成一个基底L2(0,...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多项式是指由,两个或两个以上的单项式组成的多项式,就是几个单项式相加或相减,这样子的话就是多项式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多项式区别于单项式,是由几个单项式相加或相减连接而成的式子。如a是单项式,b也是单项式,而a+b就是多项式了,因为它们有加号相连
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
多项式:几个单项式的和叫做多项式。
1、多项式中的每一个单项式叫做多项式的项。
1、多项式中的每一个单项式叫做多项式的项。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在数学中,由若干个单项式相加组成的代数式叫做多项式(若有减法:减一个数等于加上它的相反数)。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式和单项式的区别
1、定义不同
单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
2、用法不同
单项式:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。
多项式:若有减法:减一个数等于加上它的相反数。
多项式的运算法则
1、几个多项式相加减的法则是:首先把带减号的多项式中的每个单项式都变号合成一个多项式,然后合并同类项,并按字典排列法写出结果。
例如:设A=7a²-2ab+b²,B=6a²-ab-b²,C=4a²+3ab+2b²,则A-B+C=A+B′+C,其中B′=-B=-6a²+ab+b²。
即A-B+C=(7a²-2ab+b²)-(6a²-ab-b²)+(4a²+3ab+2b²)=7a²-2ab+b²-6a²+ab+b²+4a²+3ab+2b²=5a²+2ab+4b² 。
2、由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd,多项式乘以多项式就是利用乘法分配律法则得出的。
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
多项式和单项式的区别
1、定义不同
单项式:由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
多项式:在数学中,由若干个单项式相加组成的代数式叫做多项式。多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数。其中多项式中不含字母的项叫做常数项。
2、用法不同
单项式:0可看做0乘a,1可以看做1乘指数为0的字母,b可以看做b乘1),分数和字母的积的形式也是单项式。
多项式:若有减法:减一个数等于加上它的相反数。
多项式的运算法则
1、几个多项式相加减的法则是:首先把带减号的多项式中的每个单项式都变号合成一个多项式,然后合并同类项,并按字典排列法写出结果。
例如:设A=7a²-2ab+b²,B=6a²-ab-b²,C=4a²+3ab+2b²,则A-B+C=A+B′+C,其中B′=-B=-6a²+ab+b²。
即A-B+C=(7a²-2ab+b²)-(6a²-ab-b²)+(4a²+3ab+2b²)=7a²-2ab+b²-6a²+ab+b²+4a²+3ab+2b²=5a²+2ab+4b² 。
2、由多项式乘多项式法则可以得到(a+b)(c+d)=a(c+d)+b(c+d)=ac+ad+bc+bd
上面的运算过程,也可以表示为(a+b)(c+d)=ac+ad+bc+bd,多项式乘以多项式就是利用乘法分配律法则得出的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询