微分方程的解怎么求啊?

 我来答
努力去摘星星
2023-01-11 · 超过18用户采纳过TA的回答
知道答主
回答量:103
采纳率:100%
帮助的人:1.9万
展开全部

微分方程的解根据方程类型而定,以下为具体解法。

一、一阶微分方程

1.可分离变量方程

若一阶微分方程y'=f(x,y)可以写成dy/dx=p(x)q(y),则称之为可分离变量方程,分离变量得dy/q(y)=p(x)dx,两边积分∫dy/q)(y)=∫p(x)dx即可得到通解。

2.齐次方程

将齐次方程通过代换将其化为可分离变量方程。令u=y/x,即y=ux,则dy/dx=u+x*du/dx,齐次方程dy/dx=φ(y/x)化为u+x*du/dx=φ(u),分离变量得du/φ(u)-u=dx/x,两边积分

∫du/φ(u)-u=∫dx/x后即得齐次方程的通解。

3.一阶线性方程

对于一阶线性方程y'+P(x)y=Q(x)的通解为y= e ^-∫P(x)dx (∫Q(x)*e ^∫P(x)dx+C)

4.伯努利方程

伯努利方程y'+P(x)y=Q(x)y^n(n∈R,n≠0,1)的通解为z=y^1-n= e ^-∫(1-n)P(x)dx (∫(1-n)Q(x)*e ^∫(1-n)P(x)dx dx+C)

二、可降阶的二阶微分方程

  1.  y”=f(x)型方程——缺y,y'
    对于此类方程,只要连续积分两次,即可得原方程的通解.

  2. y”=f(x,y')型方程——缺y
    令y'=p,则y''=p'=dp/dx,原方程降为p(x)的一阶方程p'=f(x,p).设其通解为
    p=φ(x,C1),即y'=φ(x,C1),两边积分即可得原方程的通解y= ∫φ(x,C1)dx+C2.

  3. y”=f(y,y’)型方程——缺x
    具体变换过程如下:
    令y'=p,则y''=p'=dp/dx=p*dp/dx,原方程降为一阶方程p*dp/dy=f(y,p)
    设其通解为p=φ(y,C1),分离变量有 dy /φ(y,C1)=dx,两边积分即得其通解为
    ∫dy/φ(y,C1)x+C2

三、二阶线性微分方程

二阶常系数齐次线性方程y''+py'+qy=0,根据其特征方程r^2+pr+q=0根不同情况,其通解有以下三种形式:

(1)特征方程r2+pr+q=0有两个不相等的实根 r1,r2时,通解为Y=C1e^r1x+C2e^r2x

(2)特征方程r2+pr+q=0有两个相等的实根r时,通解为Y=(C+C2x)e^rx

(3)特征方程r2+pr+q=0有一对共轭复根r=a±iβ时,通解为Y=e^αx *(C1cos βx+C2sin βx).

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式