专升本数学考哪些?
专升本数学考试范围是:函数、极限与连续;导数与微分;中值定理与导数应用;原函数与不定积分概念、不定积分换元法、不定积分分部积分法;定积分及其应用;微分方程;空间解析几何向量代数;多元函数微分学;多元函数积分学;无穷级数。
高数一包括:高等数学、线性代数和概率统计;高等数学占60%,线性代数20%,概率论20%。
高数二包括:高等数学和线性代数;不考无穷级数、线面积分、概率统计。
专升本高数在出题上区别于普通高校的期末考试题及其他测试,也就是说每道题都只考单独的一个知识点,不具有综合性,题量大,但题目简单,只要你学会了一个知识点,就能保证会做一道题。
专升本数学所有考点分为8大模块:
第一模块:函数、极限和连续。包括四个内容:(1)高数主要研究对象--函数 (2)研究工具--极限 (3)无穷小量、无穷大量 (4)函数的连续性。
第二模块:一元函数的微分学。重要内容:(1)导数与微分 (2)微分中值定理与洛必达法则 (3)一元函数求导 (4)函数的单调性与极值。
第三模块:积分分为:定积分与不定积分。解不定积分或者定积分的方法:(1)直接法 (2)分布积分法 (3)换元法。
第四模块:常微分方程 分为:一阶微分方程、高阶微分方程和二阶线性微分方程;一阶微分方程考的比较多。
第五模块:向量代数、空间解析几何。过渡章节,为后面学习二元函数的微积分打基础。
第六模块:多元函数的微分学。多元微分(多元函数求偏导)和(复合函数和隐函数的微分法)、(多元函数的极值应用)。
第七模块:多元函数积分学重点掌握二重积分和曲线积分。
第八模块:无穷极数 工程中的近似计算会用到。包括:竖向极数和幂级数。