用数学归纳法证明不等式1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
3个回答
展开全部
数学归纳法证明:
①n=1是显然成立。
②假设对n=k-1成立,即1/(k+1)+1/(k+2)+…+1/(k+k)>13/24,则
1/(k+1)+1/(k+2)+…+1/(k+k)
=1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2) +1/(k+k)+1/(k+k-1)-1/k
>1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2)+[1/(2k)+1/(2k)-1/k]
=1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2)
>13/24
综合①②得1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
==========================================
附加告诉你两点:
第一:n=1时,不等式变为1/2+1/2>13/24,所以是成立的!
第二:这个不等式是泰勒级数,属于高等数学的东西。
有些加强命题,不妨试试看:
3/4>1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
1/(n+1) + 1/(n+2)+...+ 1/2n≤7/10-1/(4n+1)
①n=1是显然成立。
②假设对n=k-1成立,即1/(k+1)+1/(k+2)+…+1/(k+k)>13/24,则
1/(k+1)+1/(k+2)+…+1/(k+k)
=1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2) +1/(k+k)+1/(k+k-1)-1/k
>1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2)+[1/(2k)+1/(2k)-1/k]
=1/k+1/(k+1)+1/(k+2)+…+1/(k+k-2)
>13/24
综合①②得1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
==========================================
附加告诉你两点:
第一:n=1时,不等式变为1/2+1/2>13/24,所以是成立的!
第二:这个不等式是泰勒级数,属于高等数学的东西。
有些加强命题,不妨试试看:
3/4>1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
1/(n+1) + 1/(n+2)+...+ 1/2n≤7/10-1/(4n+1)
展开全部
n=1是显然成立。
若对n-1成立。
1/(n+1)+1/(n+2)+…+1/(n+n)
=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2) +1/(n+n)+1/(n+n-1)-1/n
>=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2)+[1/(2n)+1/(2n)-1/n]
=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2)
>=13/24
故1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
若对n-1成立。
1/(n+1)+1/(n+2)+…+1/(n+n)
=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2) +1/(n+n)+1/(n+n-1)-1/n
>=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2)+[1/(2n)+1/(2n)-1/n]
=1/n+1/(n+1)+1/(n+2)+…+1/(n+n-2)
>=13/24
故1/(n+1)+1/(n+2)+…+1/(n+n)>13/24
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第n个是:从分母是n+1开始加,一直要加n个。
所以,当n=1时,应该是从分母为2开始加,一共加一个!!
你的理解正确。支持!!!
所以,当n=1时,应该是从分母为2开始加,一共加一个!!
你的理解正确。支持!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询