
高一数学三角函数题,要快,高分~~!!!
已知5cos(a-b/2)+7cos(b/2)=0,求tan(a/2)*tan((a-b)/2)的值。(要有具体过程!!!)...
已知5cos(a-b/2)+7cos(b/2)=0,求tan(a/2)*tan((a-b)/2)的值。
(要有具体过程!!!) 展开
(要有具体过程!!!) 展开
2个回答
展开全部
tan(a/2)*tan[(a-b)/2]
={sin(a/2)/cos(a/2)}×{sin[(a-b)/2]/cos[(a-b)/2]}
={sin(a/2)×sin[(a-b)/2]}/{cos(a/2)×cos[(a-b)/2]}
=(-1/2){cos[(a/2)+(a-b)/2]-cos[(a/2)-(a-b)/2]} / (1/2){cos[(a/2)+(a-b)/2]+cos[(a/2)-(a-b)/2]}
=-{cos[a-(b/2)]-cos(b/2)} / {cos[a-(b/2)]+cos(b/2)}
(提示:根据tanx=sinx/cosx,然后将分子/分母积化和差)
∵5cos[a-(b/2)]+7cos(b/2)=0
∴cos[a-(b/2)]=(-7/5)cos(b/2)
∴tan(a/2)*tan[(a-b)/2]
=-{cos[a-(b/2)]-cos(b/2)} / {cos[a-(b/2)]+cos(b/2)}
=-{(-7/5)cos(b/2)-cos(b/2)} / {(-7/5)cos(b/2)+cos
(b/2)}
=-[(-12/5)cos(b/2)]/[(-2/5)cos(b/2)]
=(12/5)/(-2/5)
=-6
={sin(a/2)/cos(a/2)}×{sin[(a-b)/2]/cos[(a-b)/2]}
={sin(a/2)×sin[(a-b)/2]}/{cos(a/2)×cos[(a-b)/2]}
=(-1/2){cos[(a/2)+(a-b)/2]-cos[(a/2)-(a-b)/2]} / (1/2){cos[(a/2)+(a-b)/2]+cos[(a/2)-(a-b)/2]}
=-{cos[a-(b/2)]-cos(b/2)} / {cos[a-(b/2)]+cos(b/2)}
(提示:根据tanx=sinx/cosx,然后将分子/分母积化和差)
∵5cos[a-(b/2)]+7cos(b/2)=0
∴cos[a-(b/2)]=(-7/5)cos(b/2)
∴tan(a/2)*tan[(a-b)/2]
=-{cos[a-(b/2)]-cos(b/2)} / {cos[a-(b/2)]+cos(b/2)}
=-{(-7/5)cos(b/2)-cos(b/2)} / {(-7/5)cos(b/2)+cos
(b/2)}
=-[(-12/5)cos(b/2)]/[(-2/5)cos(b/2)]
=(12/5)/(-2/5)
=-6
展开全部
5cos(A-B/2)+7cos(B/2)=0,求tan(A/2)tan(A/2-B/2)
解:条件化为
5cos[(A/2-B/2)+ (A/2)]
=- 7cos(-B/2)
=- 7cos[(A/2-B/2)-(A/2)]
5[cos(A/2-B/2)cos(A/2)-sin(A/2-B/2)sin(A/2)]
=-7[cos(A/2-B/2)cos(A/2)+sin(A/2-B/2) sin(A/2)]
12 cos(A/2-B/2)cos(A/2)
=-2 sin(A/2-B/2)sin(A/2)
sin(A/2-B/2)sin(A/2)/cos(A/2-B/2)cos(A/2)=-12/2
故tan(A/2)tan(A/2-B/2)= -6
解:条件化为
5cos[(A/2-B/2)+ (A/2)]
=- 7cos(-B/2)
=- 7cos[(A/2-B/2)-(A/2)]
5[cos(A/2-B/2)cos(A/2)-sin(A/2-B/2)sin(A/2)]
=-7[cos(A/2-B/2)cos(A/2)+sin(A/2-B/2) sin(A/2)]
12 cos(A/2-B/2)cos(A/2)
=-2 sin(A/2-B/2)sin(A/2)
sin(A/2-B/2)sin(A/2)/cos(A/2-B/2)cos(A/2)=-12/2
故tan(A/2)tan(A/2-B/2)= -6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询