跪求大量数学高考导数解答题!要详细答案!

如题!越多越好!不嫌多!... 如题!越多越好!不嫌多! 展开
 我来答
帐号已注销
2022-05-30 · TA获得超过1038个赞
知道小有建树答主
回答量:1.9万
采纳率:77%
帮助的人:481万
展开全部

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

学数学的蜗牛
2010-04-21
知道答主
回答量:6
采纳率:0%
帮助的人:0
展开全部
导数及其应用测试题
一、选择题:
1.曲线y=ex在点(1,e)处导数为( )
(A)1 (B)e (C)-1 (D)-e
2.曲线y=x3-2x+4在点(1,3)处切线的倾斜角为( )
(A)30° (B)45°
(C)60° (D)120°
3.函数f(x)的定义域为开区间(a,b),导函数f '(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( )

(A)1个 (B)2个 (C)3个 (D)4个
4.函数f(x)=xlnx的最小值是( )
(A)e (B)-e (C)e-1 (D)-e-1
5.设f(x)、g(x)是定义域为R的恒大于零的可导函数,且f '(x)g(x)-f(x)g '(x)<0,则当a<x<b时,一定有
(A)f(x)g(x)>f(b)g(b) (B)f(x)g(a)>f(a)g(x)
(C)f(x)g(b)>f(b)g(x) (D)f(x)g(x)>f(a)g(a)
二.填空题
6.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=______.
7.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则函数f(x)在x=1处的导数f'(1)=______.

8.函数y=2x3-3x2-12x+5在[0,3]上的最大值是______;最小值是_______________.
9.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f '(x),若f '(x)是偶函数,则曲线y=f(x)在原点处的切线方程为______.
10抛物线y=x2-x与x轴所围成封闭图形的面积为
三、解答题:
11.设函数f(x)=xekx(k≠0).
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.

12.设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.
(1)求a,b的值;
(2)若对于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.

13.设a>0,函数 .
(1)当a=2时,求函数f(x)的单调区间;
(2)若不等式 对任意实数x恒成立,求a的取值范围.

14.已知函数f(x)=ln(x+a)+x2.
(1)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(2)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于 .

一、选择题:
1.B 2.B 3.A 4.D 5.C
二、填空题:
6.1 7.-2 8.5;-15 9.y=-3x 10.
三、解答题:
11.(1)f '(x)=(1+kx)ekx,令(1+kx)ekx=0,得 .
若k>0,则当 时,f '(x)<0,函数f(x)单调递减;当 时,f '(x)>0,函数f(x)单调递增.
若k<0,则当 时,f '(x)>0,函数f(x)单调递增;当 时,f '(x)<0,函数f(x)单调递减.
(2)若k>0,则当且仅当 ,即k≤1时,函数f(x)在区间(-1,1)内单调递增;若k<0,则当且仅当 ,即k≥-1时,函数f(x)在区间(-1,1)内单调递增.
综上,函数f(x)在区间(-1,1)内单调递增时,k的取值范围是[-1,0)∪(0,1].
12.解:(1)f '(x)=6x2+6ax+3b,
因为函数f(x)在x=1及x=2取得极值,则有f '(1)=0,f '(2)=0.
即 解得a=-3,b=4.
(2)由(1)可知,f(x)=2x3-9x2+12x+8c,
f '(x)=6x2-18x+12=6(x-1)(x-2).
当x∈(0,1)时,f '(x)>0;当x∈(1,2)时,f '(x)<0;当x∈(2,3)时,f '(x)>0.
所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.
则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.
因为对于任意的x∈[0,3],有f(x)<c2恒成立,
所以 9+8c<c2,解得c<-1或c>9,
因此c的取值范围为(-∞,-1)∪(9,+∞).
13.解:对函数f(x)求导得:f '(x)=eax(ax+2)(x-1).
(1)当a=2时,f '(x)=e2x(2x+2)(x-1).
令f '(x)>0,解得x>1或x<-1;
令f '(x)<0,解得-1<x<1.
所以,f(x)单调增区间为(-∞,-1),(1,+∞);f(x)单调减区间为(-1,1).
(2)令f '(x)=0,即(ax+2)(x-1)=0,解得 ,或x=1.
由a>0时,列表分析得:
x

1 (1,+∞)
f'(x) + 0 - 0 +
f(x) ↗ 极大值 ↘ 极小值 ↗
当 时,因为 ,所以 ,从而f(x)>0.
对于 时,由表可知函数在x=1时取得最小值 ,
所以,当x∈R时, .
由题意,不等式 对x∈R恒成立,
所以得 ,解得0<a≤ln3.
14.(1)解:对函数f(x)求导数,得 .
依题意有f '(-1)=0,故 .
从而 .
f(x)的定义域为 ,当 时,f '(x)>0;
当 时,f '(x)<0;
当 时,f′(x)>0.
从而,f(x)分别在区间 内单调递增,在区间 内单调递减.
(2)解:f(x)的定义域为(-a,+∞), .
方程2x2+2ax+1=0的判别式 =4a2-8.
①若 <0,即 ,在f(x)的定义域内f '(x)>0,故f(x)无极值.
②若 =0,则 或

当 时,f '(x)=0,
当 或 时,f '(x)>0,所以f(x)无极值.
若 ,f '(x) >0,f(x)也无极值.
③若 >0,即 或 ,则2x2+2ax+1=0有两个不同的实数根

当 时,x1<-a,x2<-a,从而f′(x)在f(x)的定义域内没有零点,故f(x)无极值.
当 时,x1>-a,x2>-a,f '(x)在f(x)的定义域内有两个不同的零点,所以f(x)在x=x1,x=x2处取得极值.
综上,f(x)存在极值时,a的取值范围为 .
f(x)的极值之和为f(x1)+f(x2)=ln(x1+a)+x12+ln(x2+a)+x22
=ln[(x1+a)(x2+a)]+(x1+x2)2-2x1x2=ln +a2-1>1-ln2=ln .
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
gyzx66
2010-04-15 · TA获得超过1581个赞
知道大有可为答主
回答量:1748
采纳率:0%
帮助的人:1855万
展开全部
邮箱吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式