如何证明三角形两边之和大于第三边

如何证明三角形两边之和大于第三边... 如何证明三角形两边之和大于第三边 展开
举报
ExpressM
推荐于2017-09-23 · TA获得超过759个赞
知道小有建树答主
回答量:243
采纳率:0%
帮助的人:87.3万
展开全部
证明:
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
①先证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
②对于a+c>b和b+c>a的情况证明是类似的;

综上所述,证得:三角形的任意两边之和大于第三边。

证毕。
谢谢!
jiangran1
2013-02-24 · TA获得超过286个赞
知道答主
回答量:76
采纳率:100%
帮助的人:6.9万
展开全部
可以用反证法证明
设任意三角形的三边分别为:a,b,c,(自然:a大于0,b大于0,c大于0)
根据反证法,我们这样假设:三角形的任意两边之和都小于或者等于第三边。
所以:a+b小于或等于 c(1)
a+c小于或等于 b(2)
b+c小于或等于 a(3)
将(1)(2)(3)相加可以得出:2(a+b+c)小于或等于(a+b+c),即:(a+b+c)小于或等于0,
这个结论错误,
故:假设不成立,即:三角形任意两边之和大于第三边。
7 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
518姚峰峰

2015-10-30 · 知道合伙人人力资源行家
518姚峰峰
知道合伙人人力资源行家
采纳数:50866 获赞数:564348
大学班长,中共党员。一次性通过英语四六级及计算机二级,现任公司综合办主任。为百度金榜题名时团队团长。

向TA提问 私信TA
展开全部
1、设三角形的三边长分别为a,b,c,由两点之间直线最短,可得a+b>c,根据不等式定理——不等式两边同时加或减同一个数,不等式方向不变,可得,a>c-b和b>c-a,同理,可证明其它。
即三角形中两边之差小于第三边。
2、延伸:
证明三角形两边之和大于第三边,两边之差小于第三边
证明:设三角形ABC的三个顶角A、B、C所对的边为a、b、c,
则固定a、b的长度,并固定边a不动,边b围绕C点转动,
那么在边b转动过程中,点A与点B之间的距离,即边c的长度就在变化;
易知,在边b转动的过程中,
A、B两点的最短距离是,A、B、C共线,且∠ACB=0°,则c(min)=|a-b|;
A、B两点的最长距离是,A、B、C共线,且∠ACB=180°,则c(max)=a+b。
然而要想三点A、B、C能连成一个三角形,这三点是不能共线的,
即只有边c在它的两个极值之间变化才能构成一个三角形,
即边c必须满足|a-b|<c<a+b,即常说的:
三角形两边之和大于第三边,两边之差小于第三边

注:min是最小值,max是最大值的意思!
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
xtx7990
2010-04-11 · TA获得超过991个赞
知道小有建树答主
回答量:612
采纳率:0%
帮助的人:0
展开全部
画图.
当2边之和极其接近第三边时,此时三角形顶角就极其接近180度,当相等时,顶角可以认为是180度,显然不可能,故三角形两边之和大于第三边.深入证明要用极限处理
4 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
创作者CsETy5t5hD
2019-12-26 · TA获得超过3654个赞
知道大有可为答主
回答量:3200
采纳率:33%
帮助的人:503万
展开全部
过顶点做另一边的垂线,则形成两个直角三角形斜边比直角边长,所以两边之和大于两直角边之和,故三角形两边之和大于第三边。
抢首赞 已赞过 已踩过<
你对这个回答的评价是?
评论 举报 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式