如何证明三角形两边之和大于第三边

 我来答
小小芝麻大大梦
高粉答主

推荐于2019-09-08 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:984万
展开全部

最简单的证法:两点之间线段最短。

证明过程如下:

(1)因为AC之间是线段,而AB+CB不是直线。

(2)所以AB+CB>AC。

(3)所以三角形两边之和必然大于第三边。

两点之间线段最短是一个公理。又名线段公理。比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。

扩展资料:

“三角形两边之和大于第三边”为其引申内容,不能使用它来证明“两点之间线段最短”。

“三角形两边之和大于第三边”亦可由欧几里得几何的五条公设直接导出(参见《几何原本》命题20),而由此可以证明两点之间的折线段中,直线段最短。

三角形的一些性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

小小芝麻大大梦
高粉答主

2019-06-28 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:984万
展开全部

运用公理:两点之间线段最短,所以两边之和大于第三边,移项就得到两边之差小于第三边。

证明过程如下:

(1)因为AC之间是线段,而AB+CB不是直线。

(2)所以AB+CB>AC。

(3)所以三角形两边之和必然大于第三边。

两点之间线段最短是一个公理。又名线段公理。比如把纸上的两个点重合,把纸折叠起来,那两个点就重合了,距离无限近。

扩展资料:

“三角形两边之和大于第三边”为其引申内容,不能使用它来证明“两点之间线段最短”。

“三角形两边之和大于第三边”亦可由欧几里得几何的五条公设直接导出(参见《几何原本》命题20),而由此可以证明两点之间的折线段中,直线段最短。

三角形的一些性质:

1 、在平面上三角形的内角和等于180°(内角和定理)。

2 、在平面上三角形的外角和等于360° (外角和定理)。

3、 在平面上三角形的外角等于与其不相邻的两个内角之和。

4、 一个三角形的三个内角中最少有两个锐角。

5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sh5215125
高粉答主

2015-05-17 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5988万
展开全部

1、三角形任意两条边的和大于第三边。


设三角形ABC,求证:AB+BC>AC。

证明:

延长AB到D,使BD=BC,连接CD。

∵BD=BC,

∴∠D=∠BCD,

∵∠ACD=∠ACB+∠BCD>∠BCD,

∴∠ACD>∠D,

∵在△ADC中,∠ACD>∠D,

∴AD>AC(大角对大边),

∵AD=AB+BD=AB+BC,

∴AB+BC>AC。

2、三角形任意两条边之差小于第三边。


设在三角形ABC,若AB>BC,求证:AB-BC<AC。

证明:

延长BC到D,使BD=AB,连接AD。

∵BD=AB,

∴∠D=∠BAD,

∵∠CAD=∠BAD-∠BAC=∠D-∠BAC,

∴∠CAD<∠D

∵在△ACD中,∠CAD<∠D,

∴CD<AC(大角对大边),

∵CD=BD-BC=AB-BC,

∴AB-BC<AC。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sh5215125
高粉答主

推荐于2017-10-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5988万
展开全部

三角形任意两条边的和大于第三边。


设三角形ABC,求证:AB+BC>AC。

证明:

延长AB到D,使BD=BC,连接CD。

∵BD=BC,

∴∠D=∠BCD,

∵∠ACD=∠ACB+∠BCD>∠BCD,

∴∠ACD>∠D,

∵在△ADC中,∠ACD>∠D,

∴AD>AC(大角对大边),

∵AD=AB+BD=AB+BC,

∴AB+BC>AC。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ExpressM
2010-04-11 · TA获得超过759个赞
知道小有建树答主
回答量:243
采纳率:0%
帮助的人:83.2万
展开全部
证明:
假设构成三角形的三条边分别为:a、b、c,且a、b、c大小任意;
①先证明:a+b>c;
因为a、b、c都为正数,所以要使得a+b>c成立,只需证明(a+b)²>c²,即:
(a+b)²-c²>0;
根据余弦定理:cosC=(a²+b²-c²)/2ab=((a+b)²-c²-2ab)/2ab;
移项得:(a+b)²-c²=2ab(2+cosB);
对于等式的右边:cosB在角B取值范围内的值为(-1,1);
所以1<(2+cosB)<2;
又因为a、b都是正数;
所以2ab(2+cosB)>0,即(a+b)²-c²>0,即a+b>c;
②对于a+c>b和b+c>a的情况证明是类似的;

综上所述,证得:三角形的任意两边之和大于第三边。

证毕。
谢谢!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(10)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式