2个回答
展开全部
f(x)=asin(πx+α)+bcos(πx+β)
f(2005)=asin(2005π+α)+bcos(2005π+β)=asin(π+α)+bcos(π+β)=-1
asin(π+α)+bcos(π+β)=-1
asin(α)-bcos(β)=-1
bcos(β)=asin(α)+1
f(2006)=asin(2006π+α)+bcos(2006π+β)=asin(α)+bcos(β)=asin(α)+asin(α)+1
=2asin(α)+1
f(2005)=asin(2005π+α)+bcos(2005π+β)=asin(π+α)+bcos(π+β)=-1
asin(π+α)+bcos(π+β)=-1
asin(α)-bcos(β)=-1
bcos(β)=asin(α)+1
f(2006)=asin(2006π+α)+bcos(2006π+β)=asin(α)+bcos(β)=asin(α)+asin(α)+1
=2asin(α)+1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询