大学物理刚体转动求转动惯量

一匀质矩形薄板,边长分别为a和b,质量为m,试计算刚体对于过几何中心o垂直于平面的轴线z的转动惯量... 一匀质矩形薄板,边长分别为a和b,质量为m,试计算刚体对于过几何中心o垂直于平面的轴线z的转动惯量 展开
爱锐锋s1
2010-04-14 · TA获得超过1008个赞
知道小有建树答主
回答量:337
采纳率:0%
帮助的人:138万
展开全部
匀质的薄板,相对于垂直于板所在平面的轴的转动惯量可以用正交轴定理计算:
过几何中心的平行于两边的两条轴x,y.
由正交轴定理:Iz=Ix+Iy,I表示转动惯量。
Ix=(1/12)*m*a^2
Iy=(1/12)*m*b^2
Iz=(1/12)*m*(a^2+b^2)

正交轴定理的证明如下:
Iz=∫ρ(x²+y²)dv;Ix=∫ρ(y²+z²)dv;Iy=∫ρ(x²+z²)dv
又因为,平板上,z≡0
所以,Ix,Iy化简为:Ix=∫ρy²dv;Iy=∫ρx²dv
所以Iz=∫ρ(x²+y²)dv=∫ρx²dv+∫ρy²dv=Ix+Iy.

也可以用平行轴定理计算:
将原木板均匀的分成4块与原木板相似的小木板,设原木板转动惯量为I,小木板的转动惯量就是I/16,(都是绕过几何中心的垂直轴的转动惯量)
由平行轴定理I=4*I/16+4*(m/4)*((a/4)^2+(b/4)^2)
解得:I=(1/12)m*(a^2+b^2)

还可以用定积分来算:
I=∫ρ(x²+y²)dv=∫ρ(x²+y²)dxdy=∫dy∫ρ(x²+y²)dx |(-b/2,+b/2)
=∫ρ(by²+(b^3)/12)dy |(-a/2,a/2)=ρ*(ab^3+ba^3)/12=ρab*(a^2+b^2)/12
=m(a^2+b^2)/12
zx1987168
2010-04-14 · TA获得超过2396个赞
知道小有建树答主
回答量:750
采纳率:0%
帮助的人:715万
展开全部
这种模型是要按圆盘的模型加以修正来计算的。

手边没有资料!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2021-03-14 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.3亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式