△ABC,D.E.F分别是AB BC CA的中点,BF与CD交与点O,设向量AB=a,AC=b,证明三点共线
3个回答
展开全部
△ABC,D.E.F分别是AB BC CA的中点,BF与CD交与点O,设向量AB=a,AC=b,证明AOE三点共线
由于向量符号不好写,以AB记AB向量,AB=-BA
设中线AE与BF交于O
设AO=mAE=m(AC+CE)=(m/2)(2AC-BC)=(m/2)(2AC+CB)
设BO=nBF=n(BC+CE)=(n/2)(2BC-AC),OB=-BO=(n/2)(AC+2CB)
AB=AO+BO=(m+n/2)AC+(m/2+c)BC
又AB=AC+CB
即(m+n/2)AC+(m/2+c)BC=AC+CB
(-1+m+n/2)AC+(-1+m/2+c)BC=0
因为AC,BC不共线
所以m+n/2=m/2+n=1, 解得m=n=2/3
AO=(2/3)AA1
又设AE与CD交于O1,同理可得AO1=(2/3)AE
O与O1重合
所以AE,BF,CD交于一点
三角形三边中线交于一点.
也就是AOE 三点共线
有些乱,跟你的题点也不对,自己研究吧
由于向量符号不好写,以AB记AB向量,AB=-BA
设中线AE与BF交于O
设AO=mAE=m(AC+CE)=(m/2)(2AC-BC)=(m/2)(2AC+CB)
设BO=nBF=n(BC+CE)=(n/2)(2BC-AC),OB=-BO=(n/2)(AC+2CB)
AB=AO+BO=(m+n/2)AC+(m/2+c)BC
又AB=AC+CB
即(m+n/2)AC+(m/2+c)BC=AC+CB
(-1+m+n/2)AC+(-1+m/2+c)BC=0
因为AC,BC不共线
所以m+n/2=m/2+n=1, 解得m=n=2/3
AO=(2/3)AA1
又设AE与CD交于O1,同理可得AO1=(2/3)AE
O与O1重合
所以AE,BF,CD交于一点
三角形三边中线交于一点.
也就是AOE 三点共线
有些乱,跟你的题点也不对,自己研究吧
展开全部
很简单拉,过点b做ce的平行线,与ao的延长线交于点m,过点a做ad的平行线交ad的延长线于n,由于d是ad的中点,所以o是am的中点,因此do等于1/2bm,同理an等于2do,在三角形anf与三角形cfo中af等于cf,而且an平行于cd,所以an等于co,因此又等于bm,所以e就是cb的中点。手机打字太麻烦了,希望你能看懂,看在我这么辛苦的份上记得选我的为最佳答案哟,嘿嘿
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
哪三点啊?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询