1个回答
展开全部
解:
因为sinA+sinB
=2sin(A+B)/2*cos(A+B)/2
≤ 2sin(A+B)/2...... ①
sinC+sinπ/3
=2sin(C+π/3)/2*cos(C-π/3)/2
≤ 2sin(C+π/3)/2 ......... ②
又因为sin(A+B)/2+sin(C+π/3)/2
=2sin(A+B+C+π/3)/4*cos(A+B-C-π/3)/4
≤2sinπ/3............... ③
由①,②,③得
sinA+sinB+sinC+sinπ/3 ≤4sinπ/3 ,
所以sinA+sinB+sinC≤3sinπ/3=3√3/2 ,
当A=B=C=π/3 时,
(sinA+sinB+sinC)max= 3√3/2 .
(sinA+sinB+sinC-cosA-cosB-cosC)max
=3√3/2-3/2
因为sinA+sinB
=2sin(A+B)/2*cos(A+B)/2
≤ 2sin(A+B)/2...... ①
sinC+sinπ/3
=2sin(C+π/3)/2*cos(C-π/3)/2
≤ 2sin(C+π/3)/2 ......... ②
又因为sin(A+B)/2+sin(C+π/3)/2
=2sin(A+B+C+π/3)/4*cos(A+B-C-π/3)/4
≤2sinπ/3............... ③
由①,②,③得
sinA+sinB+sinC+sinπ/3 ≤4sinπ/3 ,
所以sinA+sinB+sinC≤3sinπ/3=3√3/2 ,
当A=B=C=π/3 时,
(sinA+sinB+sinC)max= 3√3/2 .
(sinA+sinB+sinC-cosA-cosB-cosC)max
=3√3/2-3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询