不定积分性质
性质1:设a与b均为常数,则f(a->b)[a*f(x)+b*g(x)]dx=a*f(a->b)f(x)dx+b*f(a->b)g(x)dx
性质2:设a<c<b,则f(a->b)f(x)dx=f(a->c)f(x)dx+f(c->b)f(x)dx
性质3:如果在区间【a,b】上f(x)恒等于1,那么f(a->b)1dx=f(a->b)dx=b-a
性质4:如果在区间【a,b】上f(X)>=0,那么f(a->b)f(x)dx>=0(a<b)
性质5:设M及m分别是函数f(x)在区间【a,b】上的最大值和最小值,则m(b-a)<=f(a->b)f(x)dx<=M(b-a) (a<b)
性质6(定积分中值定理):如果函数f(x)在积分区间【a,b】上连续,那么在【a,b】上至少存在一个点c,使得f(a->b)f(x)dx=f(c)(b-a) (a<=c<=b)成立。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料:
定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
原命题成立,逆命题不成立。
举一例:f(x)=x^2-1,a=0,b=2,则 ∫(下0,上2)f(x)dx=2/3>0,但是在[0,1),f(x)<0,即0≤x≤2,f不≥0。
这是因为,在(0,1),f<0,积分得到的有向面积为负,但在(1,2),f>0,积分得到的有向面积为正,且后者比前者要大,所以虽然f有正有负,但积分是正的。
将g(x)-f(x)作为一个函数,就转化为上面的问题了。这里不赘述了。
对问题逆向思考,能加深我们对问题本质的理解,赞赏你的这种精神。祝你进步发展,鹏程万里!