对立事件指其中必有一个发生的两个互斥事件,此为概率论术语,亦称“逆事件”,不可能同时发生。
若A交B为不可能事件,A并B为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A和事件B必有一个且仅有一个发生。即在每一次试验中,事件A与事件B中必有一个发生,且仅有一个发生。
对立事件概率之间的关系:P(A)+P(B)=1。例如,在掷骰子试验中,A={出现的点数为偶数},b={出现的点数为奇数},A∩B为不可能事件,A∪B为必然事件,所以A与B互为对立事件。
互斥与对立的同异性
1、针对的角度不同。前者是针对能不能同时发生 ,即两个互斥事件指两者不可能同时发生;后者是针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响(注意:不是一个事件发生对另一个事件发生没有影响)。
2、试验的次数不同。前者是一次试验下出现的不同事件,后者是两次或多次不同试验下出现的不同事件。
3、概率公式不同。若A与B为互斥事件,则有概率加法公式P(A+B)=P(A)+P(B),若A与B不为互斥事件,则有公式P(A+B)=P(A)+P(B)-P(AB);若A与B为相互独立事件,则有概率乘法公式P(AB)=p(A)P(B)。
2024-11-24 广告
对立事件是指其中必有一个发生的两个互斥事件。此为概率论术语。亦称“逆事件”,不可能同时发生。
对立事件概率之间的关系:P(A)+P(B)=1。例如,在掷骰子试验中,A={出现的点数为偶数},b={出现的点数为奇数},A∩B为不可能事件,A∪B为必然事件,所以A与B互为对立事件。
扩展资料
互斥事件与对立事件两者的联系在于:对立事件属于一种特殊的互斥事件。
它们的区别可以通过定义看出来:一个事件本身与其对立事件的并集等于总的样本空间;而若两个事件互为互斥事件,表明一者发生则另一者必然不发生,但不强调它们的并集是整个样本空间。即对立必然互斥,互斥不一定会对立。互斥事件与独立事件的不同点大致有如下三点 :
第一 ,针对的角度不同.前者是针对能不能同时发生 ,即两个互斥事件是指两者不可能同时发生 ;后者是针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响(注意:不是一个事件发生对另一个事件发生没有影响 )。
第二,试验的次数不同。前者是一次试验下出现的不同事件 ,后者是两次或多次不同试验下出现的不同事件。
第三 ,概率公式不 同,若A与B为互斥事件 ,则有概率加法公式 P(A+B)=P(A)+P(B),若A与B不为互斥事件 ,则有公式P(A+B)=P(A)+P(B)-P(AB);若A与B为相互独立事件 ,则有概率乘法公式P(AB)=p(A)P(B)。
通俗点说就是A与B不可能同时发生但总有一个会发生,他们是你死我活的关系
区别于互斥事件,互斥事件也是不可能同时发生,但有可能都不发生
2014-01-15
举一个例子:假设全集为天气情况,那么事件A=天晴;事件B=下雨,显然A发生B就不可能发生,因此它们是互斥的。但它们不是对立的,因为除了天晴和下雨之外,还有其它可能的天气,比如下雪、冰雹等等,因此“天晴”和“下雨”的并集不包含所有可能的情况(整个样本空间),因此它们不是对立事件。