
已知1/x+1/(y+z)=1/2,1/y+1/(x+z)=1/3,1/z+1/(x+z)=1/4,求方程组解
1/x+1/(y+Z)=1/21/y+1/(x+z)=1/31/z+1/(x+y)=1/4三个方程左边通分得(x+y+z)/(x(y+z)=1/2(x+y+z)/(y(x...
1/x+1/(y+Z)=1/2
1/y+1/(x+z)=1/3
1/z+1/(x+y)=1/4
三个方程左边通分得
(x+y+z)/(x(y+z)=1/2
(x+y+z)/(y(x+z))=1/3
(x+y+z)/(z(x+y))=1/4
所以
x(y+z)=2(x+y+z) 方程1
y(x+z)=3(x+y+z) 方程2
z(x+y)=4(x+y+z) 方程3
方程1和方程2化简得
(xy+xz)×3=(xy+yz)×2
xy=2yz-3xz
方程1和方程3化简得
2(xy+xz)=xz+yz
2xy=yz-xz
所以4yz-6xz=yz-xz
3yz=5xz
x=0.6y
把x=0.6y 代入方程2xy=yz-xz
1.2y^2=0.4yz
z=3y
把x=0.6y,z=3y代入方程x(y+z)=2(x+y+z)
得出 0.6y×4y=2(0.6y+y+3y)
2.4y^2=9.2y
y=23/6
所以x=0.6×23/6=2.3
z=3×23/6=11.5
所以x=2.3,y=23/6,z=11.5 展开
1/y+1/(x+z)=1/3
1/z+1/(x+y)=1/4
三个方程左边通分得
(x+y+z)/(x(y+z)=1/2
(x+y+z)/(y(x+z))=1/3
(x+y+z)/(z(x+y))=1/4
所以
x(y+z)=2(x+y+z) 方程1
y(x+z)=3(x+y+z) 方程2
z(x+y)=4(x+y+z) 方程3
方程1和方程2化简得
(xy+xz)×3=(xy+yz)×2
xy=2yz-3xz
方程1和方程3化简得
2(xy+xz)=xz+yz
2xy=yz-xz
所以4yz-6xz=yz-xz
3yz=5xz
x=0.6y
把x=0.6y 代入方程2xy=yz-xz
1.2y^2=0.4yz
z=3y
把x=0.6y,z=3y代入方程x(y+z)=2(x+y+z)
得出 0.6y×4y=2(0.6y+y+3y)
2.4y^2=9.2y
y=23/6
所以x=0.6×23/6=2.3
z=3×23/6=11.5
所以x=2.3,y=23/6,z=11.5 展开
2个回答
展开全部
从1/x+1/(y+z)=1/2,
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2
打字不易,如满意,望采纳。
可得 (x+y+z)/[x(y+z)]=1/2
即 1/x =(y+z)/[2(x+y+z)]
同样可得:
1/y=(x+z)/[3(x+y+z)]
1/z=(x+y)/[4(x+y+z)]
所以:
2/x+3/y+4/z
=(y+z)/(x+y+z)+(x+z)/(x+y+z)+(x+y)/(x+y+z)
=2(x+y+z)/(x+y+z)
=2
打字不易,如满意,望采纳。
追问
抱歉,我找到答案了。对不起
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询