求这个微分方程的通解

heanmeng
2014-10-17 · TA获得超过6750个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1506万
展开全部
解:(1)显然,cosy=0是原方程的解
(2)∵cosydx+(1+e^(-x))sinydy=0
==>-sinydy/cosy=dx/(1+e^(-x))
==>-sinydy/cosy=e^xdx/(1+e^x) (等式右边分子分母同乘e^x)
==>d(cosy)/cosy=d(1+e^x)/(1+e^x)
==>ln│cosy│=ln(1+e^x)+ln│C│ (C是非零常数)
==>cosy=C(1+e^x)
∴cosy=C(1+e^x)也是原方程的解
故综合(1)和(2)知,C可取C=0,即原方程的通解是cosy=C(1+e^x) (C是任意常数)。
名字叫难忘啊DM
高粉答主

2020-02-29 · 醉心答题,欢迎关注
知道答主
回答量:5.8万
采纳率:3%
帮助的人:2893万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
happy崔华伟
2014-10-11
知道答主
回答量:23
采纳率:0%
帮助的人:11.8万
展开全部
y=c*arccos(1/(1+e^x)).
追问
有过程没啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式