判断级数sin(π/2^n)的敛散性
4个回答
展开全部
由于|sin(π/2^n)| ≤π/2^n,而级数 ∑(π/2^n) 收敛,据比较判别法可知原级数绝对收敛。
正项级数的收敛判别:
各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{sn}有界,即存在某正整数M,对一切正整数n有sM从基本定理出发,可以由此建立一系列基本的判别法:
比较判别法:
设∑un和∑vn是两个正项级数,如果存在某正数N,对一切n>N都有un≤vn,则
(1)级数∑vn收敛,则级数∑un也收敛;
(2)若级数∑un发散,则级数Σv也发散。
扩展资料
级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。
因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。
展开全部
由于
|sin(π/2^n)| ≤π/2^n,
而级数 ∑(π/2^n) 收敛,据比较判别法可知原级数绝对收敛。
|sin(π/2^n)| ≤π/2^n,
而级数 ∑(π/2^n) 收敛,据比较判别法可知原级数绝对收敛。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
绝对收敛。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |