(2012?石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,

(2012?石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使... (2012?石景山区一模)如图,已知平面α∩β=l,A、B是l上的两个点,C、D在平面β内,且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一个动点P,使得∠APD=∠BPC,则△PAB面积的最大值是(  )A.932B.365C.12D.24 展开
 我来答
萌神08AM29
2015-01-31 · 超过66用户采纳过TA的回答
知道答主
回答量:126
采纳率:0%
帮助的人:63.7万
展开全部
由题意平面α⊥平面β,A、B是平面α与平面β的交线上的两个定点,DA?β,CB?β,且DA⊥α,CB⊥α,
∴△PAD与△PBC是直角三角形,又∠APD=∠BPC,∴△PAD∽△PBC,又AD=4,BC=8,∴PB=2PA.
作PM⊥AB,垂足为M,则PM⊥β,令AM=t∈R,在两个Rt△PAM与Rt△PBM中,AM是公共边及PB=2PA,∴PA2-t2=4PA2-(6-t)2 ,解得PA2=12-4t.
∴PM=
12?4t?2
,即此四棱锥的高等于
12?4t?2

∴S=
1
2
×AB×PM=
1
2
×6×
12?4t?2
=3
16?(t +2)2
≤12.
即三角形面积的最大值为12,
故选C.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式