已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).(1)试求m、n的值;(2)求过点A(1,-11)且与曲线y

已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).(1)试求m、n的值;(2)求过点A(1,-11)且与曲线y=f(x)相切的切线方程;(3)过点A(1,... 已知函数f(x)=mx3+2nx2-12x的减区间是(-2,2).(1)试求m、n的值;(2)求过点A(1,-11)且与曲线y=f(x)相切的切线方程;(3)过点A(1,t)是否存在与曲线y=f(x)相切的3条切线,若存在求实数t的取值范围;若不存在,请说明理由. 展开
 我来答
井白竹BA
2015-02-08 · 超过76用户采纳过TA的回答
知道答主
回答量:146
采纳率:100%
帮助的人:63.9万
展开全部
(1)由题意知:f'(x)=3mx2+4nx-12<0的解集为(-2,2),
所以,-2和2为方程3mx2+4nx-12=0的根,(2分)
由韦达定理知0=?
4n
3m
,?4=
?12
3m
,即m=1,n=0.(4分)
(2)∵f(x)=x3-12x,∴f'(x)=3x2-12,∵f(1)=13-12?1=-11
当A为切点时,切线的斜率k=f'(1)=3-12=-9,
∴切线为y+11=-9(x-1),即9x+y+2=0;(6分)
当A不为切点时,设切点为P(x0,f(x0)),这时切线的斜率是k=f'(x0)=3x02-12,
切线方程为y-f(x0)=f'(x0)(x-x0),即y=3(x02-4)x-2x03
因为过点A(1,-11),-11=3(x02-4)-2x03,∴2x03-3x02+1=0,(x0-1)2(2x0+1)=0,
∴x0=1或x0=?
1
2
,而x0=1为A点,即另一个切点为P(?
1
2
, 
47
8
)

k=f′(?
1
2
)=3×
1
4
?12=?
45
4

切线方程为y+11=?
45
4
(x?1)
,即45x+4y-1=0(8分)
所以,过点A(1,-11)的切线为9x+y+2=0或45x+4y-1=0.(9分)
(3)存在满足条件的三条切线.(10分)
设点P(x0,f(x0))是过点A的直线与曲线f(x)=x3-12x的切点,
则在P点处的切线的方程为y-f(x0)=f'(x0)(x-x0)即y=3(x02-4)x-2x03
因为其过点A(1,t),所以,t=3(x02-4)-2x03=-2x03+3x02-12,
由于有三条切线,所以方程应有3个实根,(11分)
设g(x)=2x3-3x2+t+12,只要使曲线有3个零点即可.
设g'(x)=6x2-6x=0,∴x=0或x=1分别为g(x)的极值点,
当x∈(-∞,0)和(1,+∞)时g'(x)>0,g(x)在(-∞,0)和(1,+∞)上单增,
当x∈(0,1)时g'(x)<0,g(x)在(0,1)上单减,
所以,x=0为极大值点,x=1为极小值点.
所以要使曲线与x轴有3个交点,当且仅当
g(0)>0
g(1)<0
t+12>0
t+11<0

解得-12<t<-11.(
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式